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Module-lIl
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Introduction to Control Systems: Basic elements of control system
e Open loop and closed loop systems
e Tracking System, Regulators
¢ Differential equation
e Transfer function
Modeling of electric systems: Translational and rotational mechanical systems
¢ Block diagram reduction techniques.
e Signal flow graph, Mason’s Gain Formula.
Feedback characteristics of Control Systems: Effect of negative feedback on
sensitivity.
e Bandwidth, Disturbance.
e Linearizing effect of feedback, Regenerative feedback.
Control Components: D.C. Servomotors, A.C. Servomotors.
e A.C. Tachometer.
e Synchros, Stepper Motors.

Time response Analysis: Standard Test Signals
e Time response of first order systems to unit step and unit
ramp inputs.
e Time Response of Second order systems to unit step input.
e Time Response specifications, Steady State Errors.
e Generalised error series and Gensalised error coefficients.
Stability Theory: Stability and Algebraic Criteria
e Concept of stability, Necessary conditions of stability.
e Hurwitz stability criterion, Routh stability criterion.
e Application of the Routh stability criterion to linear
feedback system.
e Relative stability by shifting the origin in s-plane.
Root locus Technique: Root locus concepts, Rules of Construction of Root locus
e Determination of Roots from Root locus for a specified open
loop gain.
e Effect of adding open loop poles and zeros on Root locus.
e Root contours.
Compensation Technique: Systems with transportation lag.
e [ead compensation.
e Lag compensation
e Lead-Lag compensation

Frequency Response Analysis: Frequency domain specifications
e Correlation between Time and Frequency Response with



o Application of Nyquist stability criterion for linear feedback
system.

e Constant Mcircles.

e Constant N-Circles.

e Nichol’s chart.

11. Controllers: Concept of Proportional, Derivative and Integral Control actions.

e P, PD, PI, PID controllers.

e Zeigler-Nichols method of tuning PID controllers.



Control Systems

Module -1

Introduction to Control Systems: Basic elements of control system Open loop and closed loop systems,
Tracking System, Regulators, and Differential equation, Transfer function. Modeling of electric systems -
Translational and rotational mechanical systems. Block diagram reduction techniques. Signal flow graph,
Mason’s Gain Formula. Feedback characteristics of Control Systems: Effect of negative feedback on
sensitivity. Bandwidth, Disturbance. Linearizing effect of feedback, Regenerative feedback. Control
Components: D.C. Servomotors, A.C. Servomotors. A.C. Tachometer, Synchros, Stepper Motors.

Lecture-1

Basic Concepts of Control Systems, Open loop and closed loop systems

1. Basic elements of control system:-

In recent years, control systems have gained an increasingly importance in the development and
advancement of the modern civilization and technology. Figure shows the basic components of a control
system. Disregard the complexity of the system; it consists of an input (objective), the control system and
its output (result). Practically day-to-day activities are affected by some type of control systems. There are
two main branches of control systems:

1) Open-loop systems and
2) Closed-loop systems.

Control
Input/ Objective — ™ I

Element Output/Result

Open-loop systems:

The open-loop system is also called the non-feedback system. This is the simpler of the two systems.
A simple example is illustrated by the speed control of an automobile as shown in Figure 1-2. In this open-
loop system, there is no way to ensure the actual speed is close to the desired speed automatically. The
actual speed might be way off the desired speed because of the wind speed and/or road conditions, such as
uphill or downhill etc. Example-Automatic washing Machine, immersion rod, A field control d.c motor and
automatic control of traffic lamp.

IdVesired S crual

speed 4ﬁ| Controller I—.—I Frngine |—— spead

(Figl.2 Basic open-loop system)
Closed-loop systems:
The closed-loop system is also called the feedback system. A simple closed-system is shown in
Figure 1-3. It has a mechanism to ensure the actual speed is close to the desired speed automatically. In
closed loop control systems the control action is dependent on desired output .If any system having one or
more feedback paths forming a closed loop system. Example-air conditioners are provided with thermostat.
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Desired + _ Actual
specd Controller ——m Engine speed
Speed
.‘—
SENSOr
Fig 1-3 EBasic closed-loop system.
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Lecture-2

Servo Mechanism/Tracking System, Regulators.

Transfer Function

A simpler system or element may be governed by first order or second order differential equation.
When several elements are connected in sequence, say “n” elements, each one with first order, the total
order of the system will be nth order. In general, a collection of components or system shall be represented
by nth order differential equation
™ (E) a@% =y (F) & ™e(E)

pren + Gpag dET'f' .--'f'ﬂq_‘a'(ﬁ'}: Eﬂm TE -+ ...'f'é'u'lt@'}

In control systems, transfer function characterizes the input output relationship of
components or systems that can be described by Liner Time Invariant Differential Equation.
In the earlier period, the input output relationship of a device was represented graphically. In a system
having two or more components in sequence, it is very difficult to find graphical relation between the input
of the first element and the output of the last element. This problem is solved by transfer function.
Definition of Transfer Function
Transfer function of a LTIV system is defined as the ratio of the Laplace Transform of the output
variable to the Laplace Transform of the input variable assuming all the initial condition as zero.
Properties of Transfer Function
e The transfer function of a system is the mathematical model expressing the differential equation
that relates the output to input of the system.
e The transfer function is the property of a system independent of magnitude and the nature of the
input.
e The transfer function includes the transfer functions of the individual elements. But at the same
time, it does not provide any information regarding physical structure of the system.
e The transfer functions of many physically different systems shall be identical.
e [f the transfer function of the system is known, the output response can be studied for various types
of inputs to understand the nature of the system.
e If the transfer function is unknown, it may be found out experimentally by applying known inputs to
the device and studying the output of the system.
How you can obtain the transfer function (T. F.)
e \Write the differential equation of the system.
e Take the L. T. of the differential equation, assuming all initial condition to be zero.
e Take the ratio of the output to the input. This ratio is the T. F.
Mathematical Model of control systems
A control system is a collection of physical object connected together to serve an objective. The
mathematical model of a control system constitutes a set of differential equation.
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Lecture-3
Differential Equations of Physical Systems: Mechanical, Translational Systems.

2. Modeling of electric systems:-
Mechanical Translational systems

The model of mechanical translational systems can obtain by using three basic elements mass, spring
and dashpot. When a force is applied to a translational mechanical system, it is opposed by opposing forces
due to mass, friction and elasticity of the system. The force acting on a mechanical body is governed by
Newton’s second law of motion. For translational systems it states that the sum of forces acting on a body
is zero.
Force balance equations of idealized elements

Consider an ideal mass element shown in fig. which has negligible friction and elasticity. Let a force be
applied on it. The mass will offer an opposing force which is proportional to acceleration of a body.

I = LFr1
Let ' = applied force
Fm - opposing force due to mass
dix
Here "™ ™ dt%
10 t‘: : &
By Newton‘s second law, FmbpmM dtd

Consider an ideal frictional element dash-pot shown in fig. which has negligible mass and elasticity. Let a
force be applied on it. The dashpot will be offer an opposing force which is proportional to velocity of the
body.

iy

_ih',tﬂ

I
I

Iy
Friction

Let F' = applied force
£y = opposing force due to friction

a&x

Fo  aF

Here,

dx
By Newton‘s second law, o dt

Consider an ideal elastic element spring shown in fig. which has negligible mass and friction.
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ik

ix,u:

L3

ih‘.fﬂ

Firk
Bpring

Let £ = applied force
£ = opposing force due to elasticity

Here, £ =%
By Newton‘s second law, £ = fi. = KX
Mechanical Rotational Systems

The model of rotational mechanical systems can be obtained by using three elements, moment of
inertia [J] of mass, dash pot with rotational frictional coefficient [B] and torsion spring with
stiffness[k].When a torque is applied to a rotational mechanical system, and it is opposed by opposing
torques due to moment of inertia, friction and elasticity of the system. The torque acting on rotational
mechanical bodies is governed by Newton’s second law of motion for rotational systems.

Torque balance equations of idealized elements
Consider an ideal mass element shown in fig. which has negligible friction and elasticity. The opposing
torque due to moment of inertia is proportional to the angular acceleration.

N

7]
e T

Let T = applied torque

T j=opposing torque due to moment of inertia of the body

Here, T ; ad® 0/dt®
By Newton‘s law

T=T,=1J d*0/dt’

Consider an ideal frictional element dash pot shown in fig. which has negligible moment of inertia and
elasticity. Let a torque be applied on it. The dash pot will offer an opposing torque is proportional to
angular velocity of the body.

e

61‘1 ﬂz

Let T = applied torque
Tbv=opposing torque due to friction
Here
o d (&1 — 72}

: ar
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By Newton‘s law
=T =& I:?{El; §2)
: at

Consider an ideal elastic element, torsion spring as shown in fig. which has negligible moment of inertia and
friction. Let a torque be applied on it. The torsion spring will offer an opposing torque which is proportional
to angular displacement of the body.

Let T = applied torque

=opposing torque due to friction
Here,
T a(@ - §2)

By Newton‘s law
T=T.a(@ - &2)
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Lecture-4

Rotational systems, Gear Trains, Electrical Systems.

Modeling of electrical system
e FElectrical circuits involving resistors, capacitors and inductors are considered. The behavior of
such systems is governed by Ohm*s law and Kirchhoff*s laws.
e Resistor: Consider a resistance of ‘R carrying current ‘I* Amps as shown in Fig (a), then the
voltage drop across itis v=R I

e Inductor: Consider an inductor “L‘ H carrying current ‘I° Amps as shown in Fig (a), then the
voltage drop across it can be written as

71

T

ar
—

- ¥ L

—_—

e (apacitor: Consider a capacitor “C‘ F carrying current “I° Amps as shown in Fig (a), then the
voltage drop across it can be written as

V=

C,-“&'E'

]
L -— "
)

L J

—
Steps for modeling of electrical system
e Apply Kirchhoff's voltage law or Kirchhoff's current law to form the differential equations
describing electrical circuits comprising of resistors, capacitors, and inductors.
e Form Transfer Functions from the describing differential equations.
e Then simulate the model.

L %
vy I.HI I wiplrd

g0+ HaiE) + %E?ﬂ' =k @)

Example

E;EG‘]-%%EE'&E': PG
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Electrical systems

LRC circuit. Applying Kirchhoff*s voltage law to the system shown. We obtain the following equation

Resistance circuit

L =
E; {‘D C I €o

di 1

—_ P = it = & 1

L—+ E‘.-f-f fide=g (1)
E_r}'lﬁ:ﬁ"=€u (2)

Equation (1) & (2) give a mathematical model of the circuit. Taking the L.T. of equations (1) & (2),
assuming zero initial conditions, we obtain

Lsi(s)+ E‘f(s}-i-%%f(s] = £.(5)
11
E; Hg) = Eu(EJ

E () _ 1
The transfer function Eqey LCss— RCs+1

Armature-Controlled dc motors.

The dc motors have separately excited fields. They are either armature-controlled with fixed field or
field-controlled with fixed armature current. For example, dc motors used in instruments employ a fixed
permanent-magnet field, and the controlled signal is applied to the armature terminals.

Consider the armature-controlled dc motor shown in the following figure

Ra = armature-winding resistance, ohms

La = armature-winding inductance, henrys

I a = armature-winding current, amperes

I ¢= field current, a-pares

E , = applied armature voltage, volt

E , = back emf, volts

0 = angular displacement of the motor shaft, radians

T = torque delivered by the motor, Newton*meter

J = equivalent moment of inertia of the motor and load referred to the motor shaft kg .m”
f = equivalent viscous-friction coefficient of the motor and load referred to the motor shaft. Newton*m/rad/s
T =kl I ay where v is the air gap flux, y =k ¢I ¢, k1 is constant
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For the constant flux

ad
=k, — 1
iy = Hp rr ( )
Where Kb is a back emf constant
The differential equation for the armature circuit
i1
Lc%"' Rala+ 6y —og (2
The armature current produces the torque which is applied to the inertia and friction; hence
d2g dg
= 2 — =T = Kt 3
—5+ fp=T=Hi 3)

Assuming that all initial conditions are condition are zero/and taking the L.T. of equations (1), (2) & (3), we
obtain

E,s6(s) = Ey(s)

(Lo 5+ Bo)o0s)+ B (8) = Bois)s% + Fs)

@is) = Tis) = KI,(5)

The T.F can be obtained is

g5y i

EcG] 5&1‘.‘4{52+¢cf+ﬁcj]5+ﬁlcf+ﬁmrj
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Lecture-5

Analogy between Mechanical and electrical quanties, Thermal systems, fluid systems.

Analogous Systems

Let us consider a mechanical (both translational and rotational) and electrical system as shown in the

fig.

From the fig (a)
-y
We get
From the fig (b)

g
We get / grd
From the fig (c)

§
2 ﬁ'L-f- ﬁ'ﬁd‘ g— = wii]
it O

We get dtd
Where @ = [i @t

I
f

{a) Translational

TE/‘bﬂm

o

{b) Rotational

MEE L DX L Ex=F
Gare ar

a&
+ DT'{" H5=T
ar

1

(c) Electrical system

(1

2)

)

They are two methods to get analogous system. These are (i) force- voltage (f-v) analogy and (ii) force-

current (f-c) analogy

())Force —Voltage (f-v) Analogy

Translational Electrical Rotational
Force (F) Voltage (V) Torque (T)
Mass (M) Inductance (L) Inertia (J)

Damper (D) Resistance (R) Damper (D)
Spring (K) Elastance (1/C) Spring (K)
Displacement (x) Charge () Displacement (€ )
Velocity (u) Current (1) Velocity (« )
(i)Force — Current (f-c) Analogy

Translational Electrical Rotational
Force (F) Current (1) Torque (T)
Mass (M) Capacitance (C) Inertia (J)

Damper (D) Reciprocal of Inductance (1/L) Damper (D)

Spring (K) Conductance (1/K) Spring (K)

Displacement (x)

Flux Linkage (¥ )

Displacement (€ )

(e~ %)
Velocity dt

4
Voltage dt

(- %)
Velocity dt

BPUT
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Problem
Find the system equation for system shown in the fig. And also determine f-v and f-i analogies

K, fal
L~ I3
Kué +5‘,,
" |
,._% 'I'! TX,
For free body diagram Mi
= dixy ﬂ - i - = -
=My—=+0, ar +H.xn+51:d;§.(f1 xglt Rz = Gy = xg)
For free body diagram M2
ff1 %y = Zg)+ s (6 = Xa) = rrf'nﬂ 2+ ‘”‘ 24 Ky
Force —voltage analogy
1
f=vl=L0=HREK -rE,x‘—r G
From Eq. (1) we get
pop B0, o 8 1 _r
I.—Lgl &E'= E'; d{.-'f'c-if:-‘i '|"-ﬁ.i'-].‘I r (&1 } ':'14"(&1__:]
di, 1
po= L i o
e =iy T Ry 1+C_|'f St Rl = )+ Cr_qg_l"r.,fi—fg,t-:w
From Eq. (2) we get
1 il ':i.‘: 1
L &ﬂ]+ﬁ'u—(&1—&]—ﬁ.ﬁ w2 T Pag e
1 1
CizJGy -1 )&F+R1‘(*‘_t 2) = L” + Hat ”+an"sn.f£r

From Eq. (3) and (4) we can draw f-v analogy
L R G L

G
-

_}ﬂ-r"rf-rlfﬂ—r A== I..!r—r’{,s'f'

BPUT Page 14

(1

2

3)

“)



Control Systems

From Eq. (1) we get

df,  ldy, 1 1 d 1
1= — Y b —(ly, — 1l .
t=G—3 +H‘ = -1~£.:l 1y +H,“m_ (g — ol ]+L“(¢q W)
[t 1 L . ('-1 - "'g:' 1
1 = — — —_—
G PRty [ TR T TG e
From eq (2) we get
1 ah afa 1 d ah afr :lu! 1 dﬁ]i 1 af
L—u(wbg, x#g]'i‘Eﬁ(»#g W)= g 753 +H= aF T I e
1 1 g Ts 1

Lag fra — f“:}'ﬁ'ﬁ'.r-ﬂ'n = )= TR T Lyg frgdr

From eq (5) and (6) we can draw force-current analogy

)

(6)

BPUT
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Lecture-6

Derivation of Transfer functions, Block Diagram Algebra.

The system can be represented in two forms:
e Block diagram representation
e Signal flow graph

Block diagram
A pictorial representation of the functions performed by each component and of the flow of signals

Basic elements of a block diagram

e Blocks

e Transfer functions of elements inside the blocks

e Summing points

e Take off points

e Arrow

Block diagram

A control system may consist of a number of components. A block diagram of a system is a pictorial
representation of the functions performed by each component and of the flow of signals. The elements of a
block diagram are block, branch point and summing point.

Crutput

| it < f
¢ =
-+ ) - G -0
ey —  C =
- Crrae

.

p
Sumrning
Paint

Block

In a block diagram all system variables are linked to each other through functional blocks. The functional
block or simply block is a symbol for the mathematical operation on the input signal to the block that
produces the output.

Blocl

Input Cutput

Summing point

Although blocks are used to identify many types of mathematical operations, operations of addition and
subtraction are represented by a circle, called a summing point. As shown in Figure a summing point may
have one or several inputs. Each input has its own appropriate plus or minus sign.

A summing point has only one output and is equal to the algebraic sum of the inputs.
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Control Systems

A takeoff point is used to allow a signal to be used by more than one block or summing point. The
transfer function is given inside the block

The input in this case is E(s)
The output in this case is C(s)
C(s) = G(s) E(s)

E(s) C(s)
——> G(s) —*

Functional block — each element of the practical system represented by block with its
Branches — lines showing the connection between the blocks

Arrow — associated with each branch to indicate the direction of flow of signal

Closed loop system

Summing point — comparing the different signals

Take off point — point from which signal is taken for feed back

Advantages of Block Diagram Representation

Very simple to construct block diagram for a complicated system
Function of individual element can be visualized

Individual & Overall performance can be studied

Over all transfer function can be calculated easily

Disadvantages of Block Diagram Representation

No information about the physical construction
Source of energy is not shown

BPUT
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Simple or Canonical form of closed loop system

R(s) | E(s)

G(s) C(s)

R(s) — Laplace of reference input r(t)
C(s) — Laplace of controlled output c(t)
E(s) — Laplace of error signal e(t)

B(s) — Laplace of feedback signal b(t)
G(s) — Forward path transfer function
H(s) — Feedback path transfer function

Because of their simplicity and versatility, block diagrams are often used by control engineers to
describe all types of systems. A block diagram can be used simply to represent the composition and
interconnection of a system. Also, it can be used, together with transfer functions, to represent the cause-
and-effect relationships throughout the system. Transfer Function is defined as the relationship between an
input signal and an output signal to a device

Cascaded blocks

+
X — G — 7 X —| G Z
T *
Y G Y
Moving a summer beyond the block moving
+ +
i? +
Y 1/1Ge—Y
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Moving a summer ahead of block

X—»| G .Y X J - G —Y
Y -— Y —| G
Moving a pick-off ahead of block
)( —_—T (3 [ \( ) (3 - \f
X -
X +—i  1/G [«——
Moving a pick-off beyond a block
_+.
X G - Y
+ X—=|G/(1FGH)—Y
H |
Eliminating a feedback loop
X2(5}= XI(S',i: C['i‘] =
R(s) _ G(s)R(s) G1(5)G(s)R(s) _ G1(5)GH(s)Gi(s)R(s)
— Gi(s) [ Gals) = Gs(s) >
(@)
R(s) C(s)

Cascaded Subsystems

0‘3 I{\} f;z {’s] G | ['.]

BPUT
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X,(5) = R(5)Gy(s)

—1Gy(s)

-+

X5(5) = R(s)Ga(s) {'

Rix)

Cls) = [£0y(5) £ Gals) £ Gs(s)]Rix)

—_— ';'3{.\':

I+

Xqls) = Ri5)Ga(s)

S ('”‘{\:

Parallel Subsystems

Feedback Control System

It
transducer Controdler Plani

Eis5)

Cis)

o
LS P

Cials) == €r3(5)
It

Actualing
signal
{error)

Hais) f=— Hin |

Feedback Output
transducer

Procedure to solve Block Diagram Reduction Problems
e Step 1: Reduce the blocks connected in series
e Step 2: Reduce the blocks connected in parallel
e Step 3: Reduce the minor feedback loops

Oyt

e Step 4: Try to shift take off points towards right and Summing point towards left

e Step 5: Repeat steps 1 to 4 till simple form is obtained
e Step 6: Obtain the Transfer Function of Overall System

BPUT
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Problem 1

Obtain the Transfer function of the given block diagram

Gy
G, N R e
H, .
Combine G1, G2 which are in series
G4
Ris) +
G‘I Gz P Gj .E.ESJ
+ -
H, «
Hz -
Combine G3, G4 which are in Parallel
Ris) Cls
¥+ -
H1 w
= HE -

BPUT
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Reduce minor feedback loop of G1, G2 and H1

Ris)

G4 Gy C(s)
1+ G, G, H, B3 Gy g
+
H
Ris) Gy Gy (B + 3y C(s)
11-
L H,
Ris} 146G, Hy Cis)

Transfer function
C(z) _ Gy G (Gg + Gy )
R} 1+G;GH; -GG (Gy + G IH,

2. Obtain the transfer function for the system shown in the fig

Ri%)

—— | 7y 5]

Cis)

L
-
=
tad
e
£
_

F (%)

Hy(s5) =

Hyls)
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Ri. . t . . Clx
L Gryls) —h@—h Cry(s)Grals) J‘—

H-Il:_.".'j Hzﬂ_.'i:l ' H_ﬂ_.'t]

Rix] '['.l'_:| {.'l']{.ﬂ.: (%) f:-| (5] b

- - e

1 + G3(s)Gos)[H(5) = Hals) + Hy(s)]

3. Obtain the transfer function C/R for the block diagram shown in the fig

G,
-+
R bz‘ b: ¥ G G, » —e L
A,
H
The take-off point is shifted after the block G2
GI
G
2 . +
7 N . .
St I e y — ¢
#,
H,
Reducing the cascade block and parallel block
R G,G, ‘ 1+g:— c
H,
M

Replacing the internal feedback loop
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R —-—élﬁ? ¢

14—
1+GGH, "G >

Equivalent block diagram

+ O

GG
1] ——2— | 1+
h'|+EIE#H1

Transfer function
frg (Lo 4 irg )
-+ i’.:L Efslén
14 r:F;.! [ Gﬁl)n’a
'I' F'q g 1
Gy (g + g)
L+ Gy FgUty + Hg) + Gy O Fig

E-—
==
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Lecture-7

Signal flow Graphs, Mason’s Gain Formula.

Signal Flow Graph Representation of a system obtained from the equations, which shows the flow of the
signal

Signal flow graph

A signal flow graph is a diagram that represents a set of simultaneous linear algebraic equations. By
taking Laplace transfer, the time domain differential equations governing a control system can be
transferred to a set of algebraic equation in s-domain. A signal-flow graph consists of a network in which
nodes are connected by directed branches. It depicts the flow of signals from one point of a system to
another and gives the relationships among the signals.

Basic Elements of a Signal flow graph

e Node - a point representing a signal or variable.

e Branch — unidirectional line segment joining two nodes.

e Path — a branch or a continuous sequence of branches that can be traversed from one node to
another node.

e Loop — aclosed path that originates and terminates on the same node and along the path no node is
met twice.

¢ Nonteaching loops — two loops are said to be non touching if they do not have a common node.

Mason’s gain formula

The relationship between an input variable and an output variable of signal flow graph is given by the net
gain between the input and the output nodes is known as overall gain of the system. Mason’s gain rule for
the determination of the overall system gain is given below.

M = % F;F;{ﬂ;{ = ’i&:

Where M = gain between X inand X out
Xeus =output node variable

A= = input node variable

N = total number of forward paths

P = path gain of the k w forward path

A = 1-(sum of loop gains of all individual loop) + (sum of gain product of all possible combinations of two
non touching loops) — (sum of gain products of all possible combination of three non touching loops)
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Problem

G (%) Ga(s) Gs(s) Gals) Gs(s)
P o P g

R(s) O— - - -
V3(8) wl'“_w}

.r:'.'t: (5)

- C(s)
Fyl(s)

Hy(s)

Forward path gain: Ta = Gy (8)rg (5305 (510, (5105 (5]
Closed loop gain

1. G lFH, F)

2. Gu(s)Hz ()

3. Gr(=WH, ()

4, Ga()by () (G (¥ )Fe ()G, () Fa ()

Non touching loops taken two at a time
5. Loop 1 and loop 2: g (e 4 (alrg ()M g (=)
6. Loop 1 and loop 3: GGty ()G ()
7. Loop 2 and loop 3: G5}z (5= ()i, (5)

Non touching loops taken three at a time
8. Loop 1, 2, 3: wu ), o C)H 3 (2)G, ()H . (5)

Now, &=1-{Q)+ @)+ @)+ ®}+ {G)+ @)+ (7)NE)

Portion of & not touching the forward path
&y =1 —Go(8)H, (=)

Hence,

Glsd Lo

“ERG T &

_ g () (=)irg () (Sra (5D — 7 (5DH ()]
- A
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Lecture-8

Feedback characteristics of Control Systems: Effect of negative feedback on sensitivity.

3.Feedback characteristics of Control Systems:

In control system ,the feedback reduces the error, also reduces the sensitivity of the system to
parameter variations .The parameter may vary due to some change in conditions .The variation in
parameter affects the performance of the system. So it is necessary to make the system in sensitive to
such parameter variations.

Effect of feedback on sensitivity
The parameters of any control system changes with the change environment conditions. Also these

parameters cannot be constant throughout the life. These parameter variations affect the performance of
the system. For example, the resistance of winding of a motor changes due to change in temperature
during its operation.

e Sensitivity to model uncertainties

oF = Ratio of % change in sys I F.
~ Ratio of % change in process 1.F.

AT

T omT TG

AG ~ 3inG ~ ACT

G
Open loop:

&5
AYG) = AGERG),  ATG) = gt = AGG)
Closed-loop:
G ol {1+ GH)Y- GH 1

T =

11 GH "8G (11 GH)X @ +GIIE

AT G 1 G 1
0GT (1+GH)® G~ (1+GH)

- Reduced S below that of the open-loop sys by increasing G*H (>>1.0).

3T = 9TH _ _-GH_
H™ 9lIT ~ 1 +GH
*ifGH>>1.0> k= -1

Feedback components should not be varied with environmental changes ->change in H(s) directly affects

output response
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Lecture-9

Bandwidths, Disturbance, linearizing effect of feedback, Regenerative feedback

Find transfer function of a feedback control system -

R E 2%
— () g >

Closed- loop control

e Has ability to reduce system sensitivity

o IfGLs)H() 1 for all complex frequency of interest, then:

G G 1
1+c8 " Teri=g"

Y=

e By increasing the gain of ¢ ) it reduces the effect of #&) on the input — variation of the
parameters of the process, &g}, is reduced

e But, making () () * 1 can lead to highly oscillatory and even unstable response

When - Process, &), is changed

Open loop -

Y() = AGR(E)

R(s) —» G(s) —» Y(s)

Closed loop -
Gi=Y 4+ AG(s)
Y+ M) = e T ARG
G
=1:ca"

Then the change in the output is

a6 ()

a¥ () = L+ CHG + AGHE) + EFH(S)}HGJ
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when &1 3 AGHE) as is often the case, we have

AY(5) = &
(1 + GH(E))

Change of the output is reduced by [1 + Gi]

Disturbance in a system

Disturbance

D.(s)

Control + i

M) () Gi(s) Kol (D) G .

A 4

H(s) =

Sensor

Ga(s) —l By superposition
K. GG
. C(S) — r 12 M(S)
M(s) | = Gy (s) - C 4(2(5) I+ KéGleH
z Dz(s
kG aa DT
= G, (s)M(s) + Ga(s)D+ (s)

D(s)

\ J

State Variable Model
X¥=Ax +Bu

¥y=Cx

_ it
= law

The transfer function Gig) = Clel - A]™'B

=[Gp (g} L Gl ,d@E)]

T.F from the control Input T.F from D(s) to the
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M(s) to the output output

Disturbance in a closed-loop system

+H... Gyls) _ | _, i ;
]-_-‘H..-—.-.._-;..._._,}-_
Compensator i | .
1 + 1

A Mis) 1 - ! Cis)

H{s) ==

Sensor

Where

c6= [ﬁ] R+ fer]ow

=TERE)+ T:E)0E)
The loop gain GGz H must be made large to reduce the system sensitivity

Gy Gy

ST+ G.6.H G.G.H

3

Reducing Disturbance

e Reduce the gain ()
e Increase the loop gain GGl (Choice of G:)
e Reduce the disturbance d(t)

e Feed forward method if the disturbance can be measured
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Lecture-10

A.C. Tachometer, Synchro, Stepper Motors.

4.Control Components:

SYNCHROS:

A synchro is a type of rotary electrical transformer that is used for measuring the angle of a rotating
machine such as an antenna platform. In its general physical construction, it is much like an electric motor.
The primary winding of the transformer, fixed to the rotor, is excited by an alternating current, which by
electromagnetic induction, causes currents to flow in three star-connected secondary windings fixed at 120
degrees to each other on the stator. The relative magnitudes of secondary currents are measured and used
to determine the angle of the rotor relative to the stator, or the currents can be used to directly drive a
receiver synchro that will rotate in unison with the synchro transmitter

Stator
winding
“a—240 4
— AC supply ..“}1200 +0
o~ . Rotor !
] coil —7% §:
o—/ S
1
Slip ring Rotor
Stator
S5
Synchro Operation:

On a practical level, Synchro resembles motors, in that there is a rotor, stator, and a shaft. Ordinarily, slip
rings and brushes connect the rotor to external power. A synchro transmitter's shaft is rotated by the
mechanism that sends information, while the synchro receiver's shaft rotates a dial, or operates a light
mechanical load. Single and three-phase units are common in use, and will follow the other's rotation
when connected properly. One transmitter can turn several receivers; if torque is a factor, the transmitter
must be physically larger to source the additional current.

Uses of Synchro:
e Synchro systems were first used in the control system of the Panama Canal in the early 1900s to
transmit lock gate and valve stem positions and water levels to the control desks
e Fire-control system designs developed during World War Il used synchros extensively, to transmit
angular information from guns and sights to an analog fire control computer, and to transmit the
desired gun position back to the gun location.
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Tachometers

Tachometer is an electromechanical unit which generates an electrical output proportional to the speed of
the shaft. In automatic control system tachometer performs two main functions:

e Stabilization of system
e Computation of closed loops in a control system

AC Tachometer:

The AC tachometer is a device, which is similar to a two phase induction motor, in which two stator
windings are placed in quadrature with each other and rotor is short circuited. In AC Tachometer, a
sinusoidal voltage of rated value is applied to the primary winding, which is known as reference winding,
the secondary winding is placed 90 degrees apart from primary winding. The magnitude of sinusoidal
output voltage is directly proportional to the speed of rotor.

ALC Supply
Control

winding Ref&rence

winding

Control Rotor
voltage
from
Serso
amphfier
D.C. Tachometer

In control systems most common type of tachometers are d.c. tachometers .D.C. Tachometer contains an
iron core rotor and permanent magnet. The magnetic field is provided by the permanent magnet and no
external supply voltage is necessary. The input to the tachometer is the speed of the shaft and the output
is voltage which is proportional to the angular speed of the shaft.

g= K ol

Where e = tachometer generator voltage
K =tachometer sensitivity

@ = angular speed of shaft
Laplace transform of equation,

Bis) = Kuwl(s)
Hence transfer function of tachometer is
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£
D

In d.c tachometer the winding on rotor are connected to the commutator and the output voltage is taken

=

across the brushes. The permanent magnet tachometers are compact and reliable but having high inertia.
For reducing the voltage drop across the brushes, metal brushes with silver tips are used.

BPUT Page 33



Control Systems

Lecturer-11

Stepper motors, Amplidyne

Stepper Motors:

In stepper motors, the movement of rotor is in discrete steps. A stepper motor is electromechanical
device. There are three types of stepper motors.

1. Variable reluctance motors

2. Permanent magnet motors

3. Hybrid type

Two-Phase Variable Reluctance Stepper Motor
BIFILAR WINDING
AA' and BB’ are the Soft Iron
two ph
\ ROTOR o phases Core Rotor
. ﬁ}\l
o
L L) |
s ) |
e il
i
Motor Casing
Coils
1 .Bo H}I"brld motor. Notice thgl the teeth of the Rotor are so .des.lgned that when they are
aligned to one phase, they get misaligned to the other

e Conventional servo motors are classified as continuous rotation motors

e Stepper motors rotate through a specific number of degrees, or steps, then stop
e Eachincoming pulse results in the shaft turning a specific angular distance

e Stepper motors can control velocity, distance, and direction of mechanical load

Permanent Magnet Stepper Motor:

e PM stepper motors have rotor teeth made of permanent magnets
e Reaction of the rotor teeth to stator fields provides torque for the motor.
e Signals are applied to the stator to determine direction and step rate of the rotor.
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Permanent Magnet
Rotor

Coils

A8" and BB’ are the two phases

Motor Case

WikiForU.com
Two-Phase Permanent Magnet type Stepper

Stepper Motor Speed

Stepper motor speed depends upon the step angle and stepping rate

N=(YxS)/6
Where n= speed in RPM

Y=step angle in degrees

S= Steps per second
6= Formula constant

Amplidyne:-

An Amplidyne is a rotating amplifier. It is a prime-mover-driven d.c. generator whose output power
can be controlled by a small field power input. An amplidyne is capable of giving a controlled power output
in the range of a few hundred to few thousand watts with a power amplification of the order of 10,000

or more and hence finds wide application in feedback control system.

Study of amplidyne whose output power can be controlled by a small field power input. For studying

the characteristics.

(i) We plot a graph of Output voltage against effective field current with no load, full load (500W), and

without compensation winding effect

(ii) We draw the schematic diagram of an amplidyne system

“Wiyolts) (stator ms line-to-line voltage)

M
! Iy
i e
J, /,_—r?—,
Fon, ) EEE U R R SR ﬁ/ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
! /
—————————————————————————— — - —  Air gap line {linear model —
Curve obtained by fitting the Saturation Parameters
< Saturation Parameters
= Mo-load test measurements on the saturated motor
1 Il 1 1
200 250 300 350 400 450

BPUT
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(stator line current)
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SYHCHRD CONTROL

TRANSFORMER L&D
ORDER SIGMAL RESPONSE A‘@
ERROR
SsaMAL
A=

AMPLIFIER

COMTROL &
CURREMNT
o-c
POWER SUPPLY — ) o-& POWER f'—J FOLLOW =L@
o WMOTOR
MOTOR GENERATOR

AMPLIDYVHE MOTOR—GEMNERATOR
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Lecture-12

D.C. Servomotors, A.C. Servomotors.

Servomotor:

The servo system is the one, in which the output is some mechanical variable such as position, velocity
or acceleration. The motors used in the servo systems are called servomotors. These motors are usually
coupled to the output shaft for power matching. There are two types of servo motors.

1. DC Servomotors
2. ACServomotors

1. DC Servomotors: - D.C. servomotors are separately excited or permanent magnet d.c. servomotor
.The armature of d.c servomotor has a large resistance, therefore torque speed characteristics is linear.
The torque speed characteristics

Shows in fig(c) and fig(a) shows the schematic diagram of separately excited d.c. servomotor.
-

=

)
O IR AW —
Field

|
Supply
A

- @ @ @ OO
ez

SurTeea bure
MANIFE

Field
BADNAF

(o) ] - Ce=h

e DC servo motors are controlled by DC command signals applied directly to coils. Time constant for
field circuit is large, due to large time constant, the
Response is slow and therefore they are not commonly used.

e The magnetic fields that are formed interact with permanent magnets and cause the rotating
member to turn.

e One type of PM uses a wound armature and brushes like a conventional DC motor, but uses
magnets as pole pieces

e Another type uses wound field coils and a permanent magnet rotor.

2. AC Servomotors: - These motor having two parts namely stator and rotor. A.C. Servomotors are two phase
induction motor. The stator has two distributed windings. These windings are displayed from each other by
900. One winding is called main winding or reference winding. The reference winding is excited by constant
a.c. voltage. Other winding is called control winding, these winding is excited by variable control voltage of
the same frequency as the reference winding but having a phase displacement of 900 electrical. The
variable control voltage for control winding is obtained from a servo amplifier.

The rotor of a.c. servomotors are of two types (a)squirrel cage rotor (b)drag cup type rotor .The
squirrel cage rotor having large length and small diameter, so its resistance is very high. The air gap of
squirrel cage is kept small. In drag cup type there are two air gaps.
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For the rotor a cup of nonmagnetic conducting material is used. A stationary iron core is placed between
the conducting cup to complete the magnetic circuit .The resistance of drag cup type is high and having
high starting torque .Fig(a) shows the schematic diagram of two phase a.c. servomotor and fig(b) shows
the two types of rotor.

AC Servo Motor

Mau:m Control Control
circuitry | winding

1]
=
=4
o N
Main
winding
Maximiim spaad _®_
Splien Diagram of a AC servomotor
Fig(a)
Aluminum Alurninunm
End Ring Bars
—— L] g
IR SR+ Drag cup made up m
of aluminium Shaft

+— Laminaled core i

Y,

Figura 3-23. Squirral cage naduction motor rotor
Fig(b)
e Controlled by AC command signals applied to the coils.

e ACBrushless Servo Motor Operates on the same principle as single-phase induction motor.
Torque speed characteristic:

ghaft

T A /Max. torque Torque T, (Nm)
Starting torque

Va=Eqaq — V. = Aooli
» = Applied armature voltage

v, a4 > Eg3> Egp > By

= Egy—

Rated torque

Torque diagram for a typical squirrel cage motor 0 Speed w,(rad/sec)
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Application of servomotors:

Servomotor is widely used in radars, electromechanical actuators, computers, machine tools, tracking
and guidance system, process controllers and robots.

UNIT I
CONTROL SYSTEM MODELLING

What is control system?

A system consists of a number of components connected together to perform a specific function. In
a system when the output quantity is controlled by varying the input quantity then the system is
called control system.

2. What are the two major types of control system?
The two major types of control system are open loop and closed loop.

3. Define open loop control system.
The control system in which the output quantity has no effect upon the input quantity is called
open loop control system. This means that the output is not feedback to the input for correction.

4. Define closed loop control system.
The control system in which the output has an effect upon the input quantity so as to maintain the
desired output values are called closed loop control system.

5. What are the components of feedback control system?
The components of feedback control system are plant, feedback path elements, error detector and
controller.

6. Define transfer function.
The T.F of a system is defined as the ratio of the Laplace transform of output to Laplace transform
of input with zero initial conditions.

7. What are the basic elements used for modeling mechanical translational system.
Mass, spring and dashpot

8. What are the basic elements used for modeling mechanical rotational system?
Moment of inertia J, dashpot with rotational frictional coefficient B and torsion spring with stiffness
K

9. Name two types of electrical analogous for mechanical system.
The two types of analogies for the mechanical system are - Force voltage and force current
analogy.

10. What is block diagram?
A block diagram of a system is a pictorial representation of the functions performed by each
component of the system and shows the flow of signals. The basic elements of block diagram arrow
block, branch point and summing point.

11. What is the basis for framing the rules of block diagram reduction technique?
The rules for block diagram reduction technique are framed such that any modification made on
the diagram does not alter the input output relation.

12. What is a signal flow graph?
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13.

14.

15.

16.

17.

18.

19.

BPUT

A signal flow graph is a diagram that represents a set of simultaneous algebraic equations .By taking
L.T the time domain differential equations governing a control system can be transferred to a set of
algebraic equations in s-domain.

What is transmittance?

The transmittance is the gain acquired by the signal when it travels from one node to another node
in signal flow graph.

What is sink and source?

Source is the input node in the signal flow graph and it has only outgoing branches. Sink is an
output node in the signal flow graph and it has only incoming branches.

Define non touching loop.

The loops are said to be non touching if they do not have common nodes.

Write Masons Gain formula.

Masons Gain formula states that the overall gain of the system is

M
1 '};Qut
M==) Py =
ﬂZ "R X

Where M = gain between ¥tz and Xout

KNout = output node variable

i = input node variable

N = total number of forward paths

Fp = path gain of the k the forward path

A =1-(sum of loop gains of all individual loop) + (sum of gain product of all

possible combinations of two non touching loops) — (sum of gain products of all

possible combination of three non touching loops)
Write the analogous electrical elements in force voltage analogy for the elements of mechanical
translational system.

Force - voltage e

Velocity V- current i

Displacement x- charge q

Frictional coefficient B- Resistance R

Mass M- Inductance L

Stiffness K- Inverse of capacitance 1/C

Write the analogous electrical elements in force current analogy for the elements of mechanical
translational system.

Force - current i

Velocity v - voltage v

Displacement x- flux

Frictional coefficient B- conductance 1/R

Mass M - capacitance C

Stiffness K - Inverse of inductance 1/L

Werite the force balance equation of ideal mass element.
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20. Write the force balance equation of ideal dashpot element.

P ==
ar

21. Write the force balance equation of ideal spring element.

F = Rx
22. Distinguish between open loop and closed loop system
Open loop and Closed loop
e |naccurate
e Simple and economical
e The changes in output due to external disturbance are not corrected.
e They are generally stable
e Accurate
e Complex and costlier
e The changes in output due to external disturbances are corrected automatically.
e Great efforts are needed to design a stable system.
23. What is servomechanism?
The servomechanism is a feedback control system in which the output is mechanical position (or
time derivatives of position velocity and acceleration).
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Module -2

Lecture-13

Time response Analysis: Standard Test Signals.

5.Time response Analysis:

Introduction

e After deriving a mathematical model of a system, the system performance analysis can be done in
various methods.

¢ In analyzing and designing control systems, a basis of comparison of performance of various control
systems should be made. This basis may be set up by specifying particular test input signals and by
comparing the responses of various systems to these signals.

e The system stability, system accuracy and complete evaluation are always based on the time
response analysis and the corresponding results

e Next important step after a mathematical model of a system is obtained.

e To analyze the system’s performance.

e Normally use the standard input signals to identify the characteristics of system’s response

1.

vk wnN

Step function
Ramp function
Impulse function
Parabolic function
Sinusoidal function

It is an equation or a plot that describes the behavior of a system and contains much information about it
with respect to time response specification as
Over shooting, settling time, peak time, rise time and steady state error. Time response is formed by the
transient response and the steady state response.

Time response = Transient response + Steady state response

Transient time response (Natural response) describes the behavior of the system in its first short time
until arrives the steady state value and this response will be our study focus. If the input is step function
then the output or the response is called step time response and if the input is ramp, the response is called
ramp time response ... etc.

Classification of Time Response
Transient response
Steady state response

y(t) = yt(t) + yss(t)

Transient Response
The transient response is defined as the part of the time response that goes to zero as time becomes
very large. Thus yt(t) has the property

Limyt(t)=0
t-->o0

BPUT
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The time required to achieve the final value is called transient period. The transient response may be
exponential or oscillatory in nature. Output response consists of the sum of forced response (form the
input) and natural response (from the nature of the system).The transient response is the change in output
response from the beginning of the response to the final state of the response and the steady state
response is the output response as time is approaching infinity (or no more changes at the output).

'
Input command ¢
4
. el

Transient ?

response ] .
= Steady-state Steady-state
E response error

Elevator response
s

Time

Steady State Response: The steady state response is the part of the total response that remains after the
transient has died out. For a position control system, the steady state response when compared to with the
desired reference position gives an indication of the final accuracy of the system. If the steady state
response of the output does not agree with the desired reference exactly, the system is said to have steady
state error.

Time response = Transient response + Steady state response
Typical Input Signals

1. Impulse Signal
2. Step Signal
3. Ramp Signal

4. Parabolic Signal
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Input Function Description Sketch Use
Impulse o(1) 6(r) = =forO0— <r <0+ (1) Transient response
= 0 elsewhere ' Modeling
0+
[ a(t)yde = 1
Jo- a(1)
t
Step () u(r) = 1forr >0 §i0) Transient response
=0forr=<=0 i Steady-state error

—_—tm= |

Ramp fu(r) tu(r) = tforr = 0 10 Steady-state error
= 0 elsewhere Tk
L r
1
Parabola 51‘21;(:) %rzu(x) = %.*2 fort = 0 §i0) Steady-state error
= () elsewhere

I

Sinusoid sin wt 10 Transient response

Modeling
Steady-state error
«l&v‘ t

e Two types of inputs can be applied to a control system

e Command Input or Reference Input yr(t)

e Disturbance Input w(t) (External disturbances w(t) are typically uncontrolled variations in the load
on a control system)

e In systems controlling mechanical motions, load disturbances may represent forces.

e |nvoltage regulating systems, variations in electrical load area major source of disturbances.

Time Response Analysis & Design

Test Signals
1. Input r(t) R(S)
2. Stepinput A A/S
3. Rampinput At A/S?

4. Parabolic input At?/2 A/S’

5. Impulse input 6(t) 1
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Lecture-14

Time response of first order systems to unit step and unit ramp inputs

First-order system time response

e Transient
e Steady-state

First Order System

Yig) _ K _ K
RE) 1+K+3sT ~L+sT

Step Response of First Order System

Evolution of the transient response is determined by the pole of the transfer function at s=-1/t
where t is the time constant Also, the step response can be found:

c@={t- e )
k

Impulse response 1 + ST Exponential

g 1
Step response T Step, Exponential

Ramp response T Ramp, Step, Exponential
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Lecture-15

Time Response of Second order systems to unit step input

Second-order systems: LTI second-order system

C(g) wi
G = Ris) 2%+ 20w, 5 + ws

(5% + 2Twys+ w3 )CE) = wiRE)
Cith+ ZTw.Ct)+ wiCt)= wir()

Second-Order Systems

System Pole-zero Plot Response
G(s)
1
R(s) — 5 b <)
& S
s+ as+ b
General
X c(® c(p) =1+ 0.171e 7-854r
(5]
£ 14 1.171e 1-146¢
G(s) s-plane
1
Ris) = 5 9 <)
€)] . e - o
s Os 9 _7.854 —1.146 0.5
Overdamped
1 L L 1 I P
o] 1 2 3 4 5
c(®) c() — 1 —e YcosV 8¢ +“"§ sinV 87)
Jo 1.a% = 1—1.06e " cos(~/8r—19.477)
1.2
G s-plane
. (s) P x 1
@ R(s) = 3 o C(s) 0.8
<
52+ 25+ 9 1 0.6 -
0.4
Underdamped x oz
L L L L L
0 1 2 3 4 > ‘
()
J A c(ry =1 —cos 371
s-plane 3 B
G(s) J
1
Ris) = 5 9 <(s) L
) 5 - 1
52+ 9
Undamped
L L L P
o] 1 2 3 4 5
< (®)
e A ) 1 3z
() = 1 — 3re -
. G(s) s-plane 1 <t = =
R(s) = 5 o C(s) 0.8 |-
(e) > 0.6
s+ 65+ 9 e
0.4 [
Critically damped —3 0.2 |-
1 1 1 L |
o] 1 2 3 4 5 ’

Second order system responses

Over damped response:
Poles: Two real at -1 -O»
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Natural response: Two exponentials with time constants equal to the reciprocal of the pole location

E(F} = |::1 E--Ftr + |I'l':g E- :-z:'

Under damped response:

Poles: two complexes at —ust fog
Natural response: Damped sinusoid with an exponential envelope whose time constant is equal to the

reciprocal of the pole‘s radian frequency of the sinusoid, the damped frequency of oscillation, is equal to
the imaginary part of the poles

CEY= Ae™7% cosludt — @)

Un-damped response:

Poles: Two imaginary at t fewq

Natural response: Undammed sinusoid with radian frequency equal to the imaginary part of the poles
L) = A coslew,t = D)

Critically damped responses:
Poles: Two real at

Natural response: One term is an exponential whose time constant is equal to the reciprocal of the pole
location. Another term product of time and an exponential with time constant equal to the reciprocal of the
pole location

CUY= Rye™of + gl e™oF

Second order system responses damping cases

[N TR

Llissdam pedd

L4 Undder-
darmpesd

Critically T
dampesd e
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Second- order step response
Complex poles

el

1 3 . -
Exponential decay generated by

real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair
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Time Response specifications, Steady State Errors.

- Consider a unity feedback system
- Transfer function between e(t) and r(t)

E@_ 1 R@
ORISR T Y5

Steady state error is

e SR(s)
Sq = Jimeit) = limgaBis) = I TG
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Lecture-17,18

Static Error Constants of different types of systems. Generalized error series and generalized error coefficients

Error constants Steady state error €:s
Type of system

K, | K, | K, | Unitstep input| Unit ramp input| Unit parabolic input
0 K| O 0 1/(1+K) 09 00
1 () K 0 0 1/K 00
2 wo| ow K 0 0 1/K
3 wo| ow | w 0 0 0

Output Feedback Control Systems

Reference

Plant »  Output

h

Controller

Feedback only the output signal
— Easy access
— Obtainable in practice

6.Stability Theory: Stability and Algebraic Criteria:- A system is stable if any bounded input produces a

bounded output for all bounded initial conditions.
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Lecture-19

Stability and Algebraic Criteria, concept of stability, Necessary conditions of stability.

Input; stimulus

Desired response

Control

Output; response

system

Basic concept of stability

|
Actual response

ha Y

(a) Stable (b) N

eutral

Stability of the system and roots of characteristic equations

(c¢) Unstable

jw E
s-plane
Stable Linstable
region reglon
0
Stable Linstable
region region

Characteristic Equation
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Consider an nth-order system whose the characteristic equation (which is also the denominator of the transfer
function) is

i) = 2gs® + @IV L $ 2es V4 b G5+ @ FT

BPUT Page 52



Control Systems

Lecture-20,21

Hurwitz stability criterion, Routh stability criterion, Application of the Routh stability.

Routh Hurwitz Criterion

e Goal: Determining whether the system is stable or unstable from a characteristic equation in
polynomial form without actually solving for the roots

e Routh’s stability criterion is useful for determining the ranges of coefficients of polynomials
for stability, especially when the coefficients are in symbolic (non numerical) form
To find Kmar & w

A necessary condition for Routh’s Stability

e A necessary condition for stability of the system is that all of the roots of its characteristic
equation have negative real parts, which in turn requires that all the coefficients be positive.

e A necessary (but not sufficient) condition for stability is that all the coefficients of the
polynomial characteristic equation are positive & none of the co-efficient vanishes.

e Routh’s formulation requires the computation of a triangular array that is a function of the
coefficients of the polynomial characteristic equation.
A system is stable if and only if all the elements of the first column of the Routh array are

positive
Method for determining the Routh array
Consider the characteristic equation
als) = @gs™ + @ 8™ 4 @5 I b Lt G5+ 3,50

Routh array method

Then add subsequent rows to complete the Routh array

Compute elements for the 3rd row:

. &1'&5 _&qﬂs

T

gty — Uglpg

b, = Z2le” foda
by

Qg = Gpls

by =———

e
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Given the characteristic equation,

aE)= §%4 45%+-35%+ 25+ 5%+ 45 + 4

Is the system described by this characteristic equation stable?

Answer:

All the coefficients are positive and nonzero
Therefore, the system satisfies the necessary condition for stability

We should determine whether any of the coefficients of the first column of the Routh array are

negative

1 3 1 4
4 2 40
25 0 4
2 24 0
3 4

-16 0

4

The elements of the 1stcolumn are not all positive. Then the system is unstable.

Special cases of Routh’s criteria

Case 1: All the elements of a row in a RA are zero

Form Auxiliary equation by using the co-efficient of the row which is just above the row of zeros
Find derivative of the A.E.

Replace the row of zeros by the co-efficient of dA(s)/ds

complete the array in terms of these coefficients

analyze for any sign change, if so, unstable

no sign change, find the nature of roots of AE

non-repeated imaginary roots - marginally stable

repeated imaginary roots — unstable

Case 2: First element of any of the rows of RA is

BPUT
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e Zero and the same remaining row contains at least one non-zero element
e Substitute a small positive no. “¢* in place of zero and complete the array.

e Examine the sign change by taking Lt e =0
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Lecture-22, 23

Root locus Technique: Root locus concepts, Rules of Construction of Root locus

7.Root locus Technigue:

e Introduced by W. R. Evans in 1948

e Graphical method, in which movement of poles in the s-plane is sketched when some parameter
is varied

e The path taken by the roots of the characteristic equation when open loop gain K is varied from
0 to o~ are called root loci

e Direct Root Locus=0< k< oo

® |nverse Root Locus=-o2<k<0

The roots of the closed-loop characteristic equation define the system characteristic responses
Their location in the complex s-plane lead to prediction of the characteristics of the time domain
responses in terms of:

o damping ratio, C

o natural frequency, w n

o damping constant, o - first-order modes

o Consider how these roots change as the loop gain is varied from 0 to oo

Basics of Root Locus:

Symmetrical about real axis

RL branch starts from OL poles and terminates at OL zeroes

No. of RL branches = No. of poles of OLTF

Centroid is common intersection point of all the asymptotes on the real axis
Asymptotes are straight lines which are parallel to RL going to == and meet the RL at o
No. of asymptotes = No. of branches going to o=

At Break Away point , the RL breaks from real axis to enter into the complex plane

At Bl point, the RL enters the real axis from the complex plane

Constructing Root Locus:

Locate the OL poles & zeros in the plot
Find the branches on the real axis

Find angle of asymptotes & centroid
@ a=+1809(2q+1) / (n-m)

oa = (2 poles — % zeroes) / (n-m)

Find BA and Bl points

Find Angle Of departure (AOD) and Angle Of Arrival (AOA)
AOD = 1809- (sum of angles of vectors to the complex pole from all other poles) +

(Sum of angles of vectors to the complex pole from all zero)
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e AOA = 1802- (sum of angles of vectors to the complex zero from all other zeros) + (sum of angles of
vectors to the complex zero from poles)
e Find the point of intersection of RL with the imaginary axis.

Application of the Root Locus Procedure:

Step 1: Write the characteristic equation as
1+ Flis)=0
Step 2: Rewrite preceding equation into the form of poles and zeros as follows
Iz, 6 - =)
Step 3:
e Locate the poles and zeros with specific symbols, the root locus begins at the open-loop poles
and ends at the open loop zeros as K increases from 0 to infinity
e If open-loop system has n-m zeros at infinity, there will be n-m branches of the root locus
approaching the n-m zeros at infinity

L4 X 0

Step 4:
e The root locus on the real axis lies in a section of the real axis to the left of an odd number of real
poles and zeros
Step 5:
e The number of separate loci is equal to the number of open-loop poles
Step 6:
e The root loci must be continuous and symmetrical with respect to the horizontal real axis
Step 7:
e The loci proceed to zeros at infinity along asymptotes centered at centroid and with angles
Timg it — Lg%y

= L —

‘PE_ M ﬂ“':_ﬂlllllzlllnﬂ—?ﬂ—l]

TL = ETL

Step 8:
e The actual point at which the root locus crosses the imaginary axis is readily evaluated by using
Routh’s criterion
Step 9:
e Determine the breakaway point d (usually on the real axis)
Step 10:
e Plot the root locus that satisfy the phase criterion
LFE)=QRk+1)r k=12,
Step 11:
e Determine the parameter value K1 at a specific root using the magnitude criterion

k- ILaale = pol
T, [(s - ;)

I3
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Lecture-24, 25

Systems with transportation lag, Phase-Lead Compensation, phase-Lag Compensation

8.Compensation Technique:
Series Compensation or Cascade Compensation
e This is the most commonly used system where the controller is placed in series with the controlled
process.

® Figure shows the series compensation

it} L] Controlled olr)
> 4 - Controller process

]

Series compensation.
Feedback Compensation or Parallel Compensation

nn (1) Controlled olr)
+ process -

Controller

Feedback compensation or parallel compensation,

Series-Feedback Compensation

Controller

P 1 P Controlled ()
+ L

Controller

Series-feedback compensation.
Lead Compensator
It has a zero and a pole with zero closer to the origin. The general form of the transfer function of the load
compensator is

1
s+ =
Gle)=—7F
5 +ﬁ_r

(e + 1)

GGe)=For
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(1€
I
ﬂ ll'.!.'l"'r n
1 R |
R »
Lead compensator,
Here,
5, (5)P <
Eu(5}= ’_fs} 2
Ry
_@'}' R:
El +E
R
Eyls) _ i _ Hilly + 4
E(@E) 1 1Y~ 1
R1E+ Hg E'i-f-z? ﬁ'iﬁ';-f'rm
Hy +E
LS Hy Mg+ Hy
- O3 Eﬂ_E’g + Eg_'i"ﬂg
R (CsR, + 1)
= CsHy g
==l s
(R, +R3) 1+E.=+1:[
=R2/M(Hl+R2)) (CRL s+ 1}ACRARZNARL+R2)+1))
Subsisting
CR, R4
fr=——2"8 .
F=':':H1; A, + R tr= O]

Transfer function

T+ 1
I:‘F(ﬂ:ﬂﬁﬁ-ﬁl

Lag Compensator
It has a zero and a pole with the zero situated on the left of the pole on the negative real axis. The general
form of the transfer function of the lag compensator is

1
it alrg + 1)
-:F(s]=( i>= where e > 1,7 0

grst+1

&r

Therefore, the frequency response of the above transfer function will be

_aﬁr;‘a;-i—l}
)= eTiw + 1
B, 1
Bl = — 2 (R: 4 )
Ry+ Rodope
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Ry

Wb :\
! N
Efx) E(5)
C

o T

Lag compensator.

1
ae_ (Bt
RE R+ H=+E-IE

_ Fols+1)
T LRI+ Ra)Cs+ 1
1
_ REC(5+H; )
1
(Fy + Bl ('F'l"m)
‘ l .bl
= RE [-,5+ 2k f
TR+ ﬁ':l[_ 1
ST AEIC R:,ﬂ:)
1
E‘E |5+ﬂn :1
Erf:-l'i" H:][_ R- \J
TR TRORLC

&T
11 1 Ry
T REiC' @t (Fo+ B R.C
1 By 1 1_ 1
ar Wi+Rgr \ 't RiC
- HJ+R:
= 7
Therefore

f'u(f]_l(f'i'%}
EGE) « 1
5+ﬁ
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Lecture-26, 27

Phase-Lag —Lead Compensation, Feedback Compensation

Lag-Lead Compensator

The lag-lead compensator is the combination of a lag compensator and a lead compensator. The lag section is
provided with one real pole and one real zero, the pole being to the right of zero, where as the lead section
has one real pole and one real came with the zero being to the right of the pole.

The transfer function of the lag-lead compensator will be

E'f':: % :-+:.'
F)= T ]- +
5+ﬁ#‘ E+E

The figure shows lag lead compensator

G
i}
TR 1
E, I _%R’
i) c E.(5)
R T2 4

Lag-lead compensator.

Where & > 1, F>1

E 1
A= — o ——(Ra+ )
P R
.ﬁ':-i"m .
1 %4 1
Fals) (ﬁ'ﬁs—:ﬂiﬁ“ﬁs—cﬂ

G g, %;4- (7o + ﬁ-;){ﬂ * s‘n’l-'-_?)

i, + 1)6E0R, +1)
:.ﬁ'i :.ﬂ'g

=F 4 L350, + D IR SCy + 15
ﬁ: 5':: }C—i

E'Efjﬁ'j + l"?(sCﬂE'T + 1)
i S

::H-].EC: -+ E::EC: +1+ E'-].E':E:C-ll:-: -+ H'-].El:-l:l
5:C1C:

(sl Ry + 1sCoR: + 1)

Cabty Cabl (5 +E’f&:)(5 +3—15—)

RiRaCG e+ st oo+ o TR
(5 +:;1.rr;)(5 t a:;l.rr;)

b e o o
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The above transfer functions are comparing with

(+5)6+3)

fls) =
1 1

Eramllet )
Then
1__1 1_ L
?1_|:1E1J :F'g_ c:Rg
1,1 _ 1 .1 .1
'5{?1 ;'TF; - ':.-1 Hi EQHQ Eg_Hi;

1 1

GTyTs CoLgF R
Ta =C=E=
g = ':gﬁ.g

T, Te = Ll R, Ko

1
g =1 aor | ==

Therefore

sad Y ford

F) = = :

—_ T —

Sto Ty

Where & > L,
1 1 1 1 =
T MG T G anTn
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Module -3

Lecture-28, 29

Frequency Response Analysis: Frequency domain specifications

What is Frequency Response?
Consider a system with a sinusoidal input
el = A S wab

Under steady state, the system output as well as signals at all other points in the system are sinusoidal. The
steady state output may be written as

c(t) = B Sin (e -+ @)

The magnitude and phase relationship between the sinusoidal input and the steady state output of a
system is termed as frequency response. In linear time-invariant systems, the frequency response is
independent of the amplitude and phase of the input signal.

Frequency 1

>
$
>

u(t) v(t)
—» System [—»
Excitation Response

Frequency 2

VY o L
T P f

Advantages of Frequency Response Analysis:

The frequency response test on a system or a component is normally performed by keeping the amplitude
A fixed and determining B and @ for a suitable range of frequencies. Signal generators and precise
measuring instruments are readily available for various ranges of frequencies and amplitudes.
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e Whenever it is not possible to obtain the form of the transfer function of a system through
analytical techniques, the necessary information to compute the transfer function can be extracted
by performing the frequency response test on the system.

e The design and parameter adjustment of the open loop transfer function of a system for specified
closed loop performance is carried out somewhat more easily in frequency domain than in time
domain.

e The effect of noise disturbance and parameter variations are relatively easy to visualize and assess
through frequency response.

e The Nyquist Stability criterion is a powerful frequency domain method of extracting the information
regarding stability as well as relative stability of a system without the need to find roots of the
characteristic equation.

How to obtain Steady-State Outputs to Sinusoidal Inputs?

The Laplace Transform of the output of a linear single-input, single-output system with transfer function
G(s) can be expressed in terms of the input as

CE) = GG RE)

We know, in general that #= ¢+ ! | However, it will be shown here that, for sinusoidal steady-state
analysis, we shall replace s by its imaginary component J&2 only, since in steady state, the contribution of

the real part @ will disappear for a stable system.

Consider the stable, linear system shown below.

L IR YO I
R(s C(s

Let us assume that the input signal #"@) = & i et |

Suppose that the transfer function G(s) of the system can be written as a ratio of two polynomials in s as

F) = wls) _ wis)
' glsd  Ce+als+0)et o)
oo EBGE)
Fls)Ris) ===k
The Laplace Transform of the output of the system is then FE)Ra) §() (ﬂ, where R(s) is the Laplace

Transform of the input r(t).

C() = GEIRE) = GEI———
F* 4+
iy fig fig E E=

“5ta s+ 5+6+5+jw+5+fw '

Where, &7 is the conjugate of & . The inverse Laplace of the above equation yields
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€] = Kye™0% 4 Kpe™ kg ¢7 4 Ko ™/er ¢ frelor

For a stable system, a, b, c have positive real parts. Hence, as t approaches 2 at steady state, all the terms
in the expression for c(t) will vanish except the last two terms. Thus at steady state, the response becomes

o (F) = Ke™/wt 4 Frgfwr

Regardless of whether there are simple or multiple poles of G(s), the contribution due to them to the
steady state response will zero.

Where the constant K can be evaluated as follows:

_ . At AGC=tu)

i’l:; = {(5‘! - — - = ——
R RIS TER) T ar

E* - G5) Al _ AGGw)

E + wi s+ fe) ), 2
Since @) is a complex quantity, it can be written in the form Gliw) = |F(fed]e® ™ = Mgo®d

Where ¥ = [G(wll represents the magnitude and @ represents the angle of G{w).

. [Fmaginary part of G(iw)
—y |
/ Gl = tan |l  Real part of G

ﬁ_
Similarly, G=je) = I6{=je)le™®% = |G(r)lg/otd

We can now write,
E-..’Ew:'“'-?'} - E--.."Ew:"'"D'}

2f

€ () = GGl

= 416G einlaat -+ @]
= I glnlwt -+ @)
Where & = ﬂlﬁ';ﬁf-'«"]l =AM

Hence, for a stable, LTI system, subjected to sinusoidal input, the amplitude of the output is given by the
product of that of the input and If*G1)1, while the phase angle differs from that of the input by an amount

® =, G(wl), A positive phase angle @ is called phase lead where as a negative phase angle is called phase
lag.
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M o) £ o ;o) M o) £ o o)
= M) i) -
ih)
i x(1)
A
—~ M, ~3= M, = MM
| \ |
| |
| |
| |
! -1 ! -
i - | -
| I
| I
: | 9o =
—l‘Jlf."l. [— _.-Hbr }
Input Crutput

. . . .
Input sinusoid 35 output simizoid

K+ 205 +25) .. (54 2]

G = omg + XS + ) (54 1)

Frequency Domain parameters of prototype 2" order systems:

The closed loop transfer function of a prototype 2" order system is given by

Where [ is the damping factor and .. is the undamped natural frequency.
The sinusoidal transfer function of the system is obtained by substituting s= Ji< .

Hence,

1
T - w2

Where, ¥ ™ wfwn is the normalized driving signal frequency
M =Tgw) = 1/¥(1Q - w'2 )2 + 2@w)'2h

Ty =@ =— Lrand "(-1) [2u/ (1 -w'2)
It is seen that when u=0LM=1and =0

N=lM=1s2{ and ==/ 2
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w= oM = and @— —o

The Magnitude and Phase angle characteristics for normalized frequency 1 for certain values of ( are

shown below.

ME=¢l <0.707)

Magnitude M

Ur =w; /Wy

Normalised
frequency u
000
-50. 00+
= -
fah)
=,
o 100 00
ae]
T ]
-150. 00—
-200.00 T T TIT] T T T T LR LR T
1 10 100 1k T0k 100k T

Freguency [Hz]

The frequency where M has a peak value is known as Resonant Frequency. At this frequency, slope of the
Magnitude curve is zero. Let . be the resonant frequency and {“-" = W:-fmn) be the normalized resonant
frequency. Then
@M fduu =1wr)=-(13/2 (-4 — Lgr] 2 ywr+ 802wy Q- Lol 2324+ L2 ¢ 13130
(43 —dupr+ 800 12 u=0

wy = 1-2(%)

BPUT Page 67



Control Systems

or, &y = g1 —2( % (1)
The maximum value of the magnitude, known as the Resonant Peak is given by
(2)

The phase angle @ of T(fe) at the resonant frequency is given by
[¢f ==

Iv1—2¢<
,H!(“ ) J{;;]l

From Egn. (1) and Eqn. (2), it is seen that as & approaches zero, @ approaches @» and ¥, approaches

1=
infinity. For 0 < § "rfE , the resonant frequency always has a value less than @» and the resonant peak
has a value greater than 1.

= ekt
For & >1/¥2 | it is seen that "(dru , slope of the magnitude curve does not become zero for any real value
of @ . For this range of £, the magnitude of M decreases monotonically from M=1 at u=0 with increasing u,

as shown in the above figure. It therefore follows that for & >1/*-"E , there is no resonant peak and as such
the greatest value of M equals 1.

As is evident from the above equations, for a second order system, the resonant peak ¥+ of its frequency
response is indicative of its damping factor { for 0 < § = 1/¥2 , and the resonant frequency @ of the
frequency response is indicative of its natural frequency for a given & and hence indicative of its speed of

response (as fF =4/ (" wm)) M. and @, of the frequency response could thus be used as
performance indices for a second order system.

For w = ¢y, M decreases monotonically. The frequency at which M has a value 1/42 s of special
significance and is called the cut-off frequency “c=. The signal frequencies above the cut-off frequency are
greatly attenuated in passing through a system.

For feedback control systems, the range of frequencies over which M is equal to or greater than 1/%2 is
defined as the bandwidth = . Control systems being low-pass filters (At zero frequency, M=1), the
bandwidth @ is equal to the cut-off frequency @ .

In general, the bandwidth of a control system indicates the noise-filtering characteristic of the system. Also,
the bandwidth gives a measure of the transient response properties as observed below.
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M(& =1 <0.707)

- Bandwidth -

Magnitude M(C =22 >0.707)

N

We

Wr
Frequency, o ———p»

=
The normalized bandwidth ¥& = F{Wn of the second order system under consideration can be determined
as follows:

M=

wbfe-2(1—2"2 LEnd 3] 4-1=0
Solving for Un, we get,

wd = [1- 202+ V(2 - 42 + 4T s2)
It can be approximated in linear form as

Hyh = =118 4185

We thus observe that the normalized bandwidth is a function of damping only. The de-normalized
bandwidth can be written as

cgh = Beoygn [L- 2072 +v(2 - 42 + 441 "1/ 2)

Correlation between Time Domain and Frequency Domain:

Let us consider the step response of the second order system. The peak overshoot My of the step response
for0<& = 1is
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My =e"{(—w(/ (L -{2)))

The comparison of M and Mg plots is shown below. It shows that for 0 < § = 1/%2 | the two performance
indices are correlated as both are functions of the system damping factor £ only. It means that a system
with a given value of M5 of its frequency response, must exhibit a corresponding value of My if subjected to

a step input. For § = 1/¥2 , the resonant peak M does not exist and the correlation breaks down.
Similarly, the expression for damped natural frequency for a second order system is given as

md= Ko [1=-(211 "(142)

Thus, there exists definite correlation between . of the frequency response and damped frequency of
oscillation of the step response.

wriod = [ =20204(=(2)I1)

3.5

M, Mo 15

0.707

C—»

Mr, Mp versus §

It is further observed that the bandwidth, a frequency domain concept, is indicative of the un-damped

=4
natural frequency of a system for a given ( , and therefore indicative of the speed of response {Ef - &wn),
a time-domain concept.

Commonly used frequency response analysis Methods:

Commonly used frequency response analysis Methods are:

Bode plot
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Nyquist plot
Nichols chart
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Lecture-30, 31

Procedure for drawing the bode plots. Determination of Gain Margin and Phase Margin from Bode plot

Bode plot consists of two simultaneous graphs:
Magnitude in dB [(20 log |G(jw)|)(Base 10)] vs. frequency (in log w)

Phase (in degrees) vs. frequency (in log w)
In the logarithmic representation, the curves are drawn on semilog paper, using the log scale for frequency
and the linear scale for either magnitude (in Decibels) or phase angle (in degrees).

Advantages of Bode Plot:

e Multiplication of Magnitudes can be converted into addition

e A simple method of sketching Bode Plot is based on asymptotic approximations. Such information
on straight line asymptotes is sufficient if only rough information on frequency- response

characteristics is needed.

e Should the exact curve be desired, corrections can be made easily to these basic asymptotic plots.
Low frequency response contains sufficient information about the physical characteristics of most of

the practical systems.

Experimental determination of a transfer function is possible through Bode plot analysis.

Bode Diagrams

In Bode diagrams, frequency ratios are expressed in terms of:
Octave: it is a frequency band from w; to 2w,

Decade: it is a frequency band from w; to 10w, where w1 is any frequency value.
The basic factors which occur frequently in an arbitrary transfer function are:

Gain K
Integral and derivatives: (jw)*
First order factors: (1+jwT)™, 7=,

Quadratic Factors: {1+ 28 {fewwn)-+{Fwmn) )zl

Bode Diagrams

For Constant Gain K, log-magnitude curve is a horizontal straight line at the magnitude of (20 log K) dB

and phase angle is 0 deg.
Varying the gain K, raises or lowers the log-magnitude curve of the transfer function by the
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corresponding constant amount, but has no effect on the phase curve

Logarithmic representation of the frequency-response curve of factor ( j (w / a) +1) can be
approximated by two straight-line asymptotes

Frequency at which the two asymptotes meet is called the corner frequency or break frequency.

Magnitude Response:

Log Magnitude = 20 log K

As a number increases by a factor of 10, the corresponding value increases by a factor of 20. This may be
seen from the following:

20 loglK = 10y = 20logh + 20

20 loglH x 10%) = 20loghk + 201

Again, when expressed in decibels, the reciprocal of a number differs from its value only in sign, i.e., for the

number K,

1
20logh =-20 ]UEE

Integral and Derivative Factors @ew)=*

Log Magnitude Plot:
1

Log Magnitude ofE is

20log =—20loge

Fou
Phase Plot:
1

The phase angle of JE is constant and equal to -90°.

If the log magnitude =20kg: s plotted on a logarithmic, scale, it is a straight line. To draw this straight
line, we need to locate one point (0 dB, « = 1} on it. Since

—20log 10w dE = (-20)logw — 20045,
The slope of the line is -20 dB/decade or -6 dB/octave.

Similarly,

Log Magnitude of & is
= 2Clogw
1

The phase angle of /& is constant and equal to 90°.
1
It can be seen that the differences in the frequency responses of f&¢ and 7 lie in the slopes of the log-

magnitude curves and in the signs of the phase angles.
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1

If the transfer function contains the factor (ﬁ*) or W2ea)l™ | the log magnitude becomes respectively,

I(%|= -1 % Z0logjcu = — Znlogow dB
20 log I{e)” or

20 log QW)™ =n ® Z0lcgjw = IUnlogaw dB

1
The slopes of the log-magnitude curve for the factors Ut2)® and (w)™ are thus -20 * dB/decade and 20 ™
1
dB /decade respectively. The phase angle of Uiw}* is equal to -90°  over the entire frequency range,

where as that of {e]™ is 90° 1 over the entire frequency range. The magnitude curve will pass through the
point (0 dB, « =1)

First-Order Factors (1 + f@T)**

Log-Magnitude Curve:

1 1 |
The log magnitude of the first order factor 1+ fwl is 20 log |l +jwl)= 20 log ¥1+ wsT% 4B

1
A —
For low frequencies, such that “ T, the log magnitude may be approximated by

-20 log 41+ w3T% = 20 log 1=0 dB.

Thus, the log magnitude curve at low frequencies is the constant 0-dB line. For high frequencies, such

1
that “ # T,-20log ¥1+w3T% = _20log @l =-20log» -20log T dB.
1 a 1
ALY = T, the log magnitude equals 0 dB; at “=T , the log magnitude is -20 dB. Thus, the value of -20 log
wl  decreases by 20 dB for every decade of @ . For w T, the log-magnitude curve is thus a straight line
with a slope of -20 dB/ decade (or -6 dB/octave).

Our analysis shows that the logarithmic representation of the frequency-response curve for the factor

1/€l + fwT) can be approximated by two straight-line asymptotes, one a straight-line at 0 dB for the

R
frequency range - and the other a straight line with slope -20 dB/decade for the frequency range
=W w00

The frequencies at which the two asymptotes meet is called the Corner Frequency or the Break Frequency.

1 1
For the factorl+ faT, “W=r is the corner frequency. The corner frequency thus divides the frequency-

response curve into two regions: The low frequency region and the high frequency region.
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Phase Plot:
The exact phase angle ® of the factor 1/(L + fwT) js @ = tan™* T
At zero frequency, the phase angle is 0°. At the corner frequency, the phase angle is
= —tan"(—1) (T/T) = —tan"(-1) 1 = —435(
At infinite frequency, the phase angle becomes -90°. Since the phase angle is given by an inverse tangent
function, it is skew-symmetric about the inflection point at & ==33( .
Error in the Magnitude curve:
The error in the Magnitude curve caused by the use of asymptotes can be calculated.
Error at a particular frequency = Actual value — Approximate value of the log-magnitude curve at that
frequency
The maximum error occurs at the corner frequency
Actual value =-20 log Y11= 10logl= 303dE
Approximate value =-20 log 1=0 dB.

Thus, error at corner frequency = -3 dB.

1
The error at one octave below the corner frequency, i.e., at W= 2T is
|y 1 _E.‘E: _
—20log Il+1 +20legl = —20log. 7} = -0.97 B
'tll
N _ 2
The error at one octave above the corner frequency, i.e,,at = T is

- _I:'x-’EI)
F7a 2 lagsd = =3 e [ = - {
50 Iong +1+20log 20log. 5 097 d&

Thus, the error at one octave avove or below the corner frequency is approximately -1 dB.

1

The transfer function 1+ /@l has the characteristics of a low-pass filter. For frequencies above w=

L
T, the

log-magnitude falls of rapidly towards - .
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Bode diagrams of some standard
first order terms
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Quadratic Factors i i :

When there are complex conjugate zeroes, the prototype 2" order systems will have the transfer function

rls)= 5% + 2w, 5+ wBE

L |

Ref: N. S. Nise,
Control Systems
Engineering, 4th gq.
Wiley, 2004.

Bode plots for:
a.G(s)=s

When there are complex conjugate poles, the prototype 2" order systems will have the transfer function

1
fle)= — -
' el=+ 20wkl 5 + cwlE

For the complex conjugate poles,
1

o2z () + ()

(o) =

Log Magnitude Curve:
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[ = =

En]05|[l+2¢(fw£:)+(f%r]‘=—'.Eu]c.gﬂ;rr[ _(ﬁ)‘] +(2£(£))

Log magnitude=
For low frequencies, i.e., % iy |
Log magnitude becomes -20 log 1= 0 dB

The low frequencies asymptote is thus a horizontal line at 0 dB.

For high frequenciesi.e., # @,
(i)‘ ) o

Log magnitude becomes -20 log W=/ =-40 log <= dB =-40 - 40 log «= dB.

The high frequency asymptote is thus a straight line having the slope -40 dB/ decade.

The high frequency asymptote intersects the low-frequency one at « = 4, the corner frequency.

The two asymptotes derived are independent of ¢ . The resonant peak occurs near the frequency & = .
The damping ration ¢ determines the magnitude of this resonant peak. The magnitude of errors caused by

the straight line asymptotes depend on the value of ¢-It is large for small values of <-

Phase Plot:
1

[ f 0] ey
1+ 28 (2] + {22 }
The phase angle of the quadratic factor L (" w“[ ( '5"’-“) is

I &
1 L &)
g= L= " RS = —tan’ T
ez () 65| - )
The phase angle is a function of both £ and « .
o =, g=0[
W= Gy, @ = —tanT(—1) (2 /0) = tan’(-1) o= = —90(
W o= o G LEO(

The phase angle curve is skew-symmetric about the inflection point where & = —=20(_ .

The frequency response for the factor

Gl = [1 +27 (fi)+ (fi)

Can be obtained by merely reversing the sign of the log magnitude and that of the phase angle for the

factor
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2+ ()

Scaled Response for 1/(s? + 2;w,s + v?)
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Magnitude Plot Phase Plot

Relationship between System Type and Log-Magnitude Curve:

For a unity feedback system the static position, velocity and acceleration error constants describe the low-
frequency behavior of type 0, type 1, and type 2 systems respectively. For a given system, only one of the
static error constants is finite and significant. (The larger the value of the finite static error constant, the

higher the loop gain is as ¢ approaches zero.)

The type of the system determines the slope of the log-magnitude curve at low frequencies. Thus,
information concerning the existence and magnitude of the steady-state error of a control system to a
given input can be determined from the observation of the low-frequency region of the log-magnitude
curve.

Determination of Static Error constants:
Assume that the open loop transfer function of a unity feedback system is given by

K{a s+ 1785+ 1)....(l8,,5 + 1)

G(E] - E":ﬁls + 1]&"3:5 + 17 .(pr -+ l}
Or

K +1 + 1 nfes +1
e Ta g je M8y, fw ) 3y ?

(Fead™ (T8 feu + 1T Bgfeo + 1) (T fe0 + 1)
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Static Position Error constant:

The figure shown below shows an example of the log-magnitude plot of a type 0 system. In such a system,

the magnitude of &) equals Ky atlow frequencies, or

115.:: T(fu) =K =Ry

20 log K, -20 dB/decade

-40 dB/decade

A\

® Inlog scale

Static Velocity Error constant:

The figure given below shows an example of the log-magnitude of a type 1 unity feedback system. The

intersection of the initial -20 dB/decade segment (or its extension) with the line & =1 has the magnitude
20 log .. This may be seen as follows.

dB 'y
-20 dB/decade
20 log Kp
P\~ Ja20 log K,
(0] »-

o) 3 oY) ©
-40 dB/decade
—

In a type-1 system,
{QWJ—HL Forw 1
' — (‘rw}J ¥ i N

Thus,
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3
20 ]QE(;_W) = i0logk,;
W=l

The intersection of the initial -20 dB/decade segment (or its extension) with the 0-dB line has a frequency
numerically equal to K+, i.e., if the frequency at this intersection is ¢+, then

%|=1 or, H‘.r='r‘:l:|.

Static Acceleration Error constant:

The figure given below shows an example of the log-magnitude of a type 2 unity feedback system. The

intersection of the initial -40 dB/decade segment (or its extension) with the line «* =1 has the magnitude
20 log = . This may be seen as follows.

dB A
-40 dB/decade
20 log K,
420 log K,
-20 dB/decade
0 = f -
O o Inlog scale
v

Since at low frequencies,

K,

i) = Tl ’

Forw 1,

It follows that

F
7 -7
-ﬂ]ng(g_w]:)w:i = 20logk,

The frequency @= at the intersection of the initial -40 dB/decade segment (or its extension) with the 0-dB
line gives the square root of £= numerically. This can be seen from the following.

fig |
Z =2 =
20 ]DEI@ Qlogl=10

Which yields Wg = yhg
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Phase Margin (PM):

Phase margin is that amount of additional phase lag at the gain crossover frequency required to bring the
system to the verge of instability.

Gain Crossover Frequency:

Gain crossover frequency is that frequency at which, IGUw])l, the magnitude of the open loop transfer
function is unity.

The Phase margin PM is 180° plus the phase angle ® of the open loop transfer function at the gain
crossover frequency.

PM = (180( + ®arger |

Gain Margin (PM):
Gain Margin is the reciprocal of the magnitude &Gl at the Phase crossover frequency.
Phase Crossover Frequency:

Phase crossover frequency is that frequency at which, £G0w), the phase angle of the open loop transfer

function equals -180°.

Thus, Gain Margin,

1
G = =——=
r (mvw”)m-pcr

In terms of decibels,

[C3T 48 = 2010glc Gealloe e

A Few Comments on Phase and Gain Margins:

e For a stable non-minimum phase system, the gain margin indicates how much the gain can be
increased before the system becomes unstable. For an unstable system, the gain margin indicates
how much the gain can be decreased before the system becomes stable.

e The Gain Margin of a first and Second order system is infinite since the polar plot of such systems
does not cross the real axis. Thus, theoretically, the 1* and 2" order systems cannot be unstable.

e Itis important to point out that conditionally stable systems will have two or more phase crossover
frequencies and some higher order systems with complicated numerator dynamics may also have
two or more gain crossover frequencies. For stable systems having two or more gain crossover
frequencies, the Phase Margin is measured at the highest Gain Cross-over Frequency.

e Either the Gain Margin alone or the Phase Margin alone does not give a sufficient indication of the
relative stability. Both should be given for determination of stability.
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For satisfactory performance, PM should be between 30° and 60° and the GM should be greater
than 6 dB.

The requirement that the PM be between 30° and 60° means that in Bode diagram, the slope of the
log-magnitude curve at the gain crossover frequency should be more gradual than -40 dB/ decade.
In most practical cases, a slope of -20 dB/decade is desirable. If the slope at the gain crossover

frequency is -60 dB/ decade or steeper, the system is most likely unstable.

PHASE AND GAIN MARGIN THROUGH BODE PLOTS:

UdB ‘

180°

M (dB) g Positive Negative
l £Ain margin 5 gain margin
Gain 1 # / }
plot g Y N7 > 2l I —
{ = log 0 E ' | ! Log o "g * i Logw
:] By - o 5" L
| I L
| | L
i ! [
|
Phase o | oy
Phase (degrees) \ % -18(F i I - Q _1R(° I + .
- 1 il
AL 7}\ Loge
! 0% 1= Positive =270° =
By 1| phase margin Negative
[ h i
! i phase margin
Oy, W, Stable system [nstanle system
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Lecture-31
Polar plots. Polar plots of some standard type function

A sinusoidal transfer function &) is a complex function and is given by

o) = RelrGedl + 7 Fnfe(ial

Or, GUw) = GGallecGu) = Mig

It is seen that @{e) can be represented as a phasor of magnitude M and phase angle # (Measured

positively in counter-clockwise direction). As the input frequency ¢ is varied from 0 to @ , the magnitude

M and the phase angle ® change and hence the tip of the phasor G{w) traces a locus in the complex
plane. The locus thus obtained is known as ‘Polar Plot” as shown below.

Im Y

e Re[G{jw)] —=

ay

f

=1
Procedure for Sketching of the Polar Plot:

To sketch the Polar Plot of of a given Open Loop Transfer Function over the entire frequency range,

e Express the given expression for the OLTF in (1+sT) form.
e Substitute ¥ =@ in the expression for G)H ) and get GG (o).
e Find out the expressions for [& (e {fea)l and <& (udH e,

e Tabulate various values of magnitude and phase angle for different values of @ starting from 0 to
o

e There are usually four key points to be known.
(a) The starting of the plot where @ =
(b) The end of the plot where w = .
(c) The point where the Polar plot crosses the real axis, i.e., {1 (GGwd) =0

(d) The point where the Polar plot crosses the imaginary axis, i.e., B¢ (G(w)) = 0.
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Fix all points in a polar graph sheet and join the points. (Polar graph sheet has concentric circles and
radial lines. The concentric circles represent the magnitude and the radial lines represent the phase
angles. In polar sheet, + ve phase angle is measured in ACW from 0°and -ve phase angle is measured in
CW from 0°

Examples:

A 1

8 = ——
Polar Plot of ~ ™ ¢ 1+=T:

(sl
Consider a 1* order system with transfer function ! 14+ 5T

The sinusoidal transfer function is

Ced = 7oF

il wi T3 = tan~ T = Ma@

When @ =00 =1 and &= U Therefore, the phasor at 2 =0 has unit length and lies along the positive
O T S
real axis. As @ increases, M decreases and phase angle increases negatively. When =~ T , “4 and

g=—2% As w—® M becomes zero and % is -90°- This is represented by a phasor of zero length

directed along the -90° axis in the complex plane. In fact, the locus of GUw) can be shown to be a
semicircle.

270°

@ =0 o =0
-180° 450

12 ,/w increasing

=1/T

-90° Polar Plot of 1/ (1+jwT)

1
Clg) mm — —
Polar Plotof ~ °  &(L +&T).

Consider now the transfer function

1

feaf L -+ fuT)
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This transfer function may be rearranged as

-T 1

() = 14 w373 _fwéﬁl-l-w:T:}

Um G o) = =1 = for = L - 90°
Mm GQw) =—0-70=c—180°

The general shape of this transfer function is shown below. The plot is asymptotic to the vertical line
passing through the point (-T, 0).

-90°

Polar Plot of 1/jo (1+joT)

1

El.'g:l — . _
b 5=+2-§;.|:'J115+|:'Jf1:

Polar Plot of

The low and high frequency regions of the polar plot of the following sinusoidal transfer function

1
i) = ;
Joracb)+ 2]

are given respectively by

lm ¢(e) = 1c0° nd lim (e} =0 — 160°

The Polar plot of this sinusoidal transfer function starts at 1£9* and ends at & —180® 35 @ increases

from zero to infinity. Thus, the high frequency portion of @0 is a tangent to the negative real axis.
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® =0 ® =0

(Large &)

(Small )

®n

The exact shape of a polar plot depends on the value of the damping ratio < Thus the general shape is
same for both overdamped and underdamped case.

1
For the under-damped case, at @ = ¢x, we have G Gfemd = 27, and the phase angle at & = s is -90°.
Therefore, it can be seen that the frequency at which the &0 |ocus intersects the imaginary axis is the
undamped natural frequency .. The peak value of “{w) is obtained as the ratio of magnitude of the

vector at the resonant frequency ¢ to the magnitude of the vector at «w = 0.

®»=w 0 ®» =0

Resonant Peak, M,

,,,,, - - or

®n

For the over-damped case, as ¢ increases well beyond unity, the 4wl locus approaches a semi-circle..
This may be seen from the fact that, for a heavily damped system, the characteristic roots are real, and one
is much smaller than the other. Since, for sufficiently large ¢ , the effect of the larger root (larger in
absolute value) on the response becomes very small, the system behaves like a 1* order one.
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Example:

Obtain the Polar Plot of the following transfer function:

3.-_.'....-£

Wud=1=s

1 E 1
. o )
Since &Gw) can be written as 1+ jod
The magnitude and phase angle are respectively

1
+ feul’

1

Gra)] = |ei=d = —
G Ge) | | 1 1 4 dTE

And

cG(e) = ceeh 4+ £ -l —tan~t wT

1 —
T+jal

Since the magnitude decreases from unity monotonically, and the phase angle also decreases
monotonically, and indefinitely, the polar plot of the given transfer function is a spiral, as shown in the
above figure.

General Nature of Nyquist Plots:

The polar plots of a transfer function of the form

KQ 4 TA_fead(l + TA,fea).....{1 + TH,, fea)
()™ (L + THy feod 4 TAgfew) el + T fe0)

Gl =

Where, 1t =7 or the degree of the denominator polynomial is greater than that of the numerator will
have the following shapes.
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Im
Type 2 system
' w2
m w=10
w7 -
OT;“\(IJ‘- (C’: 0 Re
@
/ A
) . \ »
Type 1 system ‘ Type 0 system
0

General shapes of the polar plots of some important functions

The general shapes of the polar plots of some important functions are shown below. From the figures,
following observations are made.

Addition of a non-zero pole to a transfer function results in further rotation of the polar plot through an

angle of —90° g w — @

e Addition of a pole at the origin to the transfer function rotates the polar plot at zero and infinite
frequencies by a further angle of =907 |

e The effect of addition of a zero to the transfer function is to rotate the high frequency portion of the
polar plot by 90° in the counter-clockwise direction.

e If degree of the denominator polynomial is greater than that of the numerator, the &%) loci will
converge to the origin clockwise.

e Any complicated shape of the polar plot curves are caused by the numerator dynamics, which is by
the time constants in the numerator of the transfer function.
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General shapes of the polar plots of some other important functions
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RELATIVE STAB

In designing a control system, we require that the system be stable. We also require that the system has
adequate relative stability. The closeness of approach of the @4 |ocus to the -1+j0 point is an indication
of the relative stability of a stable system. In general, we may expect that the closer the “{w) locus is to
the 1+j0 point, the larger is the maximum overshoot in the transient response and the larger it takes to
damp out. When the & |ocus passes through the 1+j0 point, the system is on the verge of instability and
exhibits sustained oscillations. The measures of relative stability in the frequency domain are the Gain

ILITY ANALYSIS:

Margin and the Phase Margin.
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Lecture - 33, 34

Stability in frequency domain : Principle of argument, Nyquist stability criterion

10.Stability in frequency domain:

A stability test for time invariant linear systems can also be derived in the frequency domain. It is known as
Nyquist stability criterion.

It is based on the complex analysis result known as Cauchy’s principle of argument. Note that the system
transfer function is a complex function. By applying Cauchy’s principle of argument to the open-loop system
transfer function, we will get information about stability of the closed-loop system transfer function and
arrive at the Nyquist stability criterion (Nyquist, 1932).

The importance of Nyquist stability lies in the fact that it can also be used to determine the relative degree
of system stability by producing the so-called phase and gain stability margins. These stability margins are
needed for frequency domain controller design techniques.

We present Only the Essence of the Nyquist stability Criterion and Define the Phase and Gain stability
margins. The Nyquist Method is used for studying the stability of linear Systems with Pure time delay.
For a SISO feedback System the closed-loop transfer function is given by:
_G@®
" 1+ HEX()
where G{g} represents the system and H{sJ is the feedback element.
Since the system poles are determined as those values at which its transfer function becomes infinity, it
follows that the closed-loop system poles are obtained by solving the following equation
1+ H(@)Gis) = 0 = Als)
which, in fact, represents the System characteristic equation.

M(g)

In the following we consider the complex function
Dig)= 1 + His)G(s]
Whose zeros are the closed-loop poles of the transfer function. In addition, it is easy to see that the poles of

Dis) are the zeros of M{s} At the same time the poles of D12} are the open-loop control system poles

since they are contributed by the poles of His)G(), which can be considered as the open-loop control
system transfer function- obtained when the feedback loop is open at some point. The Nyquist stability test

is obtained by applying the Cauchy principle of argument to the complex function Disl. First, we state
Cauchy’s principle of argument.

Cauchy'’s principle of argument
Let F{a) be an analytic function in a closed region of the complex plane § given in Figure below except at a

finite number of points (namely, the poles of F{s) ). It is also assumed that F(&)is analytic at every point on
the contour. Then, as 5 travels around the contour in the s — plane in the clockwise direction, the
function F) encircles the origin in the (Re{ Fig)}, Im {FE)D-plane in the same direction N times (see

Figure 4.6), with N given by
N=F-%Z
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Where £ and P stand for the number of zeros and poles (including their multiplicities) of the function
F(#) inside the contour.

The above result can be also written as

argfFE)} = {(Z — F)2Zn = 2N

Which justifies the terminology used, “the principle of argument”.

\ Im{s} o Im{Fizl}

a\l

-
=
é. "',
7

[[71) )] =
| k__,f’/ /

s-plane Z=3 N=-3 k/

o P=5 ) Fizl-plane

Figure 1. Cauchy's principle of argument

Nyquist Plot
The Nyquist plot is a polar plot of the function D&} = 1 + Gl=)H ()

When 5 travels around the contour given in Figure below.

p fm iz}

s-plang

Figure 2. Contour in S- plane

The contour in this figure covers the whole unstable half plane of the complex plane s ,B— = | Since the
function D'®) | according to Cauchy’s principle of argument, must be analytic at every point on the contour,

the poles of D(8) on the imaginary axis must be encircled by infinitesimally small semicircles.

Nyquist Stability Criterion

It states that the number of unstable closed-loop poles is equal to the number of unstable open-loop poles
plus the number of encirclements of the origin of the Nyquist plot of the complex function.

This can be easily justified by applying Cauchy’s principle of argument to the function with the -plane
contour given in Figure 2. Note that and represent the numbers of zeros and poles, respectively, of in the
unstable part of the complex plane. At the same time, the zeros of are the closed-loop system poles, and
the poles of are the open-loop system poles (closed-loop zeros).

The above criterion can be slightly simplified if instead of plotting the function, we plot only the function

and count encirclement of the Nyquist plot of around the point, so that the modified Nyquist criterion has
the following form.
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Stability via the Nyquist Diagram

We now use the Nyquist diagram to determine a system's stability, using the simple equation. The values of
P, the number of open-loop poles of G(s)H(s) enclosed by the contour, and N, the number of encirclements
the Nyquist diagram makes about — 1, are used to determine Z, the number of right-half-plane poles of the
closed-loop system.

If the closed-loop system has a variable gain in the loop, one question we would like to ask is, "For what
range of gain is the system stable?" The general approach is to set the loop gain equal to unity and draw
the Nyquist diagram. Since gain is simply a multiplying factor, the effect of the gain is to multiply the
resultant by a constant anywhere along the Nyquist diagram.

R(s) + E(s) | K(s+3)s+5) )
{5 - 2)(s -4} -

GH-plane

= 11
-1.33

Figure 3. Nyquist stability contour and diagram

As the gain is varied, we can visualize the Nyquist diagram is expanding (increased gain) or shrinking
(decreased gain) like a balloon. This motion could move the Nyquist diagram past the —1 point, changing
the stability picture. For this system, since P = 2, the critical point must be encircled by the Nyquist diagram
to yield N = 2 and a stable system. A reduction in gain would place the critical point outside the Nyquist
diagram where N =0, yielding Z = 2, an unstable system.

If the Nyquist diagram intersects the real axis at —1, then &G )2 Gead =1 | From root locus concepts, when
G(s)H(s) = —1, the variable s is a closed-loop pole of the system. Thus, the frequency at which the Nyquist
diagram intersects —1 is the same frequency at which the root locus crosses the /co-axis. Hence, the
system is marginally stable if the Nyquist diagram intersects the real axis at —1.

In summary, then, if the open-loop system contains a variable gain, K, set K = 1 and sketch the Nyquist
diagram. Consider the critical point to be at -1/K rather than at - 1 . Adjust the value of K to yield stability,
based upon the Nyquist criterion.
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PROBLEM: For the unity feedback system, where G(s) = K/[s(s + 3)( s + 5)], find the range of gain, K, for
stability, instability, and the value of gain for marginal stability. For marginal stability also find the frequency
of oscillation. Use the Nyquist criterion.

SOLUTION: First set K =1 and sketch the Nyquist diagram for the system —

Jjo Im

b o= 4om =1 - '
s-plane GH-plane

i =1+ =

=415
% ¥ - =yl Re
-5 -3 =1 — 00083
=10+

Figure 4. Nyquist conture and stability diagram

For all points on the imaginary axis,

K I _ —8w® — f(l5w — wF)
sle -+ A + SNESL T g+ f(15 - w33
Atw =0 Gl Gul= —0.0356 - joo
Next find the point where the Nyquist diagram intersects the negative real axis. Setting the imaginary part

Glam)H Gul) =

of Eg. (1) equal to zero, we find « = v15,

Substituting this value of @ back into Eg. (1) yields the real part of -0.0083. Finally, at @« =@
GlediGad = GWHE),, | = o= 02(- 270

From the contour of Figure, P = 0; for stability N must then be equal to zero. From Figure, the system is
stable if the critical point lies outside the contour (N =0), so that Z=P — N =0. Thus, K can be increased by
1/0.0083 = 120.5 before the Nyquist diagram encircles — 1.

Hence, for stability, K < 120.5. For marginal stability K = 120.5. At this gain the Nyquist diagram intersects —

1, and the frequency of oscillation is ¥15 rad/s
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Stability via Mapping Only the Positive [®@ — Axis
Once the stability of a system is determined by the Nyquist criterion, continued evaluation of the system

can be simplified by using just the mapping of the positive /i< -axis.

s-plane Contour rH-plane
Root locus

Figure 5. Contour and root locus of system that is stable for small gain and unstable for large gain

Consider the system shown in above Figure, which is stable at low values of gain and unstable at high values
of gain. Since the contour does not encircle open-loop poles, the Nyquist criterion tells us that we must
have no encirclements of —1 for the system to be stable. We can see from the Nyquist diagram that the
encirclements of the critical point can be determined from the mapping of the positive Ji2 -axis alone. If
the gain is small, the mapping will pass to the right of —1, and the system will be stable. If the gain is high,
the mapping will pass to the left of —1, and the system will be unstable. Thus, this system is stable for the
range of loop gain, K, that ensures that the open-loop magnitude is less than unity at that frequency where
the phase angle is 180° (or, equivalently, —180°). This statement is thus an alternative to the Nyquist
criterion for this system.

ja Im

s-plane Contour G H-plane
Root locus

Figure 6. Contour and root locus of system that is unstable for small gain and stable for large gain

Now consider the system shown in above Figure, which is unstable at low values of gain and stable at high
values of gain. Since the contour encloses two open-loop poles, two counter clockwise encirclements of the
critical point are required for stability. Thus, for this case the system is stable if the open-loop magnitude is
greater than unity at that frequency where the phase angle is 180° (or, equivalently, —180°).

In summary, first determine stability from the Nyquist criterion and the Nyquist diagram. Next interpret the
Nyquist criterion and determine whether the mapping of just the positive imaginary axis should have a gain
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of less than or greater than unity at 180°. If the Nyquist diagram crosses +180° at multiple frequencies,
determine the interpretation from the Nyquist criterion.

PROBLEM: Find the range of gain for stability and instability, and the gain for marginal stability, for the
unity feedback system, where G(s) = K/[(s2 + 2s + 2)(s + 2)]. For marginal stability find the radian frequency
of oscillation. Use the Nyquist criterion and the mapping of only the positive imaginary axis.

SOLUTION: Since the open-loop poles are only in the left-half-plane, the Nyquist criterion tells us that we
want no encirclements of - 1 for stability. Hence, a gain less than unity at £180° is required. Begin by letting
K =1 and draw the portion of the contour along the positive imaginary axis as shown in Figure.

ja Im
I.H A
Contour
s-plane b GH-plang
X il I |
] . . -
NV A i 4

- 7 = Re
| w =6 A’
X

Figure 7. Nyquist diagram of Mapping of positive imaginary axis

In Figure, the intersection with the negative real axis is found by letting 5 = jco in G(s)H(s), setting the
imaginary part equal to zero to find the frequency, and then substituting the frequency into the real part of
G(jco)H{jco). Thus, for any point on the positive imaginary axis,

) 1 |
Gl = G e+ s
e o) Jeals — e

Lol = %)% 4 (g = )8

Setting the imaginary part equal to zero, we find & = Vo Substituting this value back into equation yields
- [%) = [%)Elﬂﬂ“.

the real part, * %

This closed-loop system is stable if the magnitude of the frequency response is less than unity at 180°.

Hence, the system is stable for K < 20, unstable for K > 20, and marginally stable for K = 20. When the

system is marginally stable, the radian frequency of oscillation is V6

Example:1
Consider the following transfer function
Kl + 1)
R T A
Putting the value of = 1® in above equation, we obtain
kifew + 1)
Jw)* o + 4w+ 5)
The magnitude and phase angle equations:
(ol +1)

02 [x-’m-f +16 | (Yol +25)

Gijw) =
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Evaluating magnitude and phase response at @ = U+ and « = +w

At =04

GG w) = & — 18U 4+ &

At w =
[Gilw LG w) = we — 270

PHASE AND GAIN MARGIN THROUGH NYQUIST PLOTS:

BPUT

Im

GH-plane

Nyquist
diagram

Unit circle

Gain difference
before instability

Gain margin = Gy = 20 log a

Phase difference
before instability

Phase margin = @, = o
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Positive
gain
margin

"1

Positive
phase
margin

Stable system

BPUT

Gl w)

G plane

7=180° — ¢

|

K, = _
| G(jo)|

Im 4

Negative
phase margin

(; plane

Y ! -
—1 \ 'ﬁ'-_,/‘ Ec
e
Kg "F-...,___: ﬁgﬂ_u‘-’c
| Zain
Gljw) margin

Unstable system

System is said to be

- Stable, if G, and ¥, both are positive, iL,e. w,, > W,
- Marginally stable, if G, and ®,, both are zero i.e. w, = W,
= Unstable, if G, and &, both are negative i.e. w, < wg

S~
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Lecturer - 35, 36

Closed loop frequency response: Constant M circles. Constant N-Circles, Nichol’s chart

The closed-loop frequency response is the locus of the closed-loop magnitude frequency response for unity
feedback system. If the frequency response of an open loop system is plotted in polar coordinates, and
superimposed on the top of M-circles, then the closed-loop magnitude frequency response is determined
by each intersection of this polar plot with the constant M-circles.

M-circles are contours of constant closed-loop magnitude on Nyquist plane.
PR )
Let Ljw) =x+1v . Then o = 1+x+]¥. Hence,
|‘|"§:jm}|5 = M? = M1 4 x)* +ME?2 =t +-15'2
= (1-M¥)x? - 2M%x+ (1 - M2 )y? = M*?
Then two cases are possible:
M=1thenx= —% {vertical line}
M* M* 2= w2
- i oy Y )' M sowe get:

[ m_) $yd - (L)
" T-Me 1-¢

M VL MYV
Mf-l) ”":(ME-J

Constant M-circles are the circles in the complex plane with radiusM'Z/C LMY "Z =111 centered at

M2
{—W, ")

M = 1 then (1 —ME](XE -2
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M=1.3

M=10

G-plane

-4

Constant N-circles

cTjwi=x= &[m

= tan~? g} — tan~1 [%ij

= tan™ %]
Trx4y

Therefore

'E}=+Iﬁf}]

¥

tang = ————==N
x4 x+y”

-3

-2 -1

Figure 8. Constant M circles

For a constant value of &N = tan« js also constant.
Rearranging the equation we get,

o3 +6-7

constant N-circles are the circles in the complex plane with radius
figure 2). Constant N-circles are the locus of the closed-loop phase frequency response. Similarly to M-
circles, if the frequency response of an open loop system is plotted in polar coordinates, and superimposed
on the top of N-circles, then the closed-loop phase frequency response is determined by each intersection
of this polar plot with the constant N-circles. All the constant N-circles pass through the origin and (-1+j0)

EONtad
ﬁ)=(23:1*

point regardless of the value of N.
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G-plane

30"

Al

70"

Wl e, ]
) Re

)

=70

A0

4"

[

-3 -2 -1 I
Figure 9. Constant N circles

Example 1- Closed-loop frequency response from open-loop frequency response
Find the closed-loop frequency response of the unity feedback system with open-loop transfer function

50
" s(s+3)(s+6)

using the open-loop polar frequency response curve, constant M-circles, and constant N-circles.
Solution
Open-loop frequency response is
Gijw) = — 50_. = 30
: joxljor + Bl + 6] -9w? + |18 - wi)
Polar plot of Gijwl)is shown superimposed over the M- and N-circles in figure 3.

Gis)
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Im
3
Cr-plane
M=110
o= 20°
2 250
3 o
M-—1.3 o Y
40 M=0.7
a0°
0.5
0.4
l‘) | I'l. | - R.E
3.5
A7
2.5
2.0
=70
-1
1.5 —50°
-—A4{)°
—30" Jan
_25 zuu
-2
1.0
-3 w =08
—4 -3 -2 | ] 1 2

Figure 10. Constant N and M circles

The closed-loop magnitude frequency response can be obtained by finding the intersection of each point of
the GlJw) with the M-circles, and the closed-loop phase frequency response can be obtained by finding
the intersection of each point of the Gll®} with the N-circles.
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Im
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Figure 11. Closed loop frequency response

Nichols Charts
Since it is easier to construct a bode plot than a polar plot, it is preferable to have constant-M and constant-
 contours constructed on logarithmic gain and phase coordinates. N.B. Nichols transformed the constant-

M and constant- contours constructed on logarithmic gain and phase coordinate and the resulting chart
is known as the Nichols chart. It displays magnitude response in decibels, so that changes in gain are as
simple to handle as in the Bode plot. Nichols chart is a plot of open-loop magnitude in dB vs. open-loop
phase. Every point on the constant M- and N-circles is transferred to the Nichols chart (see figure 4). The

intersection of the G} with the Nichols chart yields the frequency response of the closed-loop system.

25
—355° 1.0
20 1.1 —5°
S 10 [ 2
= _ o -
z [ 340 ""W l‘ —0e
-*.3 S "‘W," _40::.
& | 3207 S\ AT —NX)] //
S0 ‘\"_\‘_..... ._-55.’” 0.707
p NS = Sl
B A LA
-5 “' s @
300° LT A SN —60°
-10 7 Pes— 0.3
~280° f—t ! A —80°
N —270°-240°-260° —220°-200°—180°—160° 140° —120° —100° —90°
280  -260 -240 -220 -200 -180 -160 —140 -120 -100 80
Phase (degrees)
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Example 2- Closed-loop frequency response from open-loop frequency response using Nichols chart
Consider a unity feedback system with the following open-loop transfer function
K
g) = — — -
@ .8+ 1iis+ 2}
Find the closed-loop frequency response using Nichols chart.

Solution

Superimposing the open-loop frequency response for K = 1 on the Nichols chart, we obtain the plot shown
in figure 5.

25
~355°
20 —5°
I3 ~10°
o~ =
210
= o o
S L340 00
ERE
B | -320° ~40
20
= 60°
10 X \ 0.3
s =1 o
- [ I T = T ". \ _8
—270°-240° ~260° —220°-200°—180° —160°_140° ~120° ~100° —90°

-15
-280 260 -240 -220 -200 -180 -160 -140 -120 -100 -80
Phase (degrees)
Figure 5: Nichols chart for Example 2

The intersection of the plot of Gilex}with the Nichols chart yields the frequency response of the closed-loop
system

If the gain is increased by 10 dB, one should simply raise the curve for K=1 by 10 dB to obtain the curve for
K=3.16 (10 dB) (see figure 5).
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Nichols Chart for elementary systems
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Lecture - 37, 38

Controllers : Concept of Proportional, Derivative, Integral Control actions, P, PD

11.Controllers: Concept of Proportional, Derivative and Integral Control actions:

A variety of controls are used to manipulate processes, however the most simple and often most effective
is the PID controller. Much more practical than the typical on/off controller, PID controllers allow for much
better adjustments to be made in the system. While this is true, there are some advantages to using an
on/off controller:
e Relatively simple to design and execute
e Binary sensors and actuators (such as an on/off controller) are generally more reliable and less
expensive
Although there are some advantages, there are large disadvantages to using an on/off controller scheme:
e [nefficient (using this control is like driving with full gas and full breaks)
e Can generate noise when seeking stability (can dramatically overshoot or undershoot a set-point)
e Physically wearing on valves and switches (continuously turning valves/switches fully on and fully off
causes them to become worn out much quicker)

To allow for much better control and fine-tuning adjustments, most industrial processes use a PID
controller scheme.

Reference 4
—¢*Controller

Plant » Output

The controller attempts to correct the error between a measured process variable and desired set-point by
calculating the difference and then performing a corrective action to adjust the process accordingly. A PID
controller controls a process through three parameters: Proportional (P), Integral (1), and Derivative (D).
These parameters can be weighted, or tuned, to adjust their effect on the process. The following section
will provide a brief introduction on PID controllers.
The Process Gain (K) is the ratio of change of the output variable (responding variable) to the change of the
input variable (forcing function). It specifically defines the sensitivity of the output variable to a given
change in the input variable.
K= A0utput

Anput

Gain can only be described as a steady state parameter and give no knowledge about the dynamics of the
process and is independent of the design and operating variables. A gain has three components that include
the sign, the value, and the units. The sign indicates how the output responds to the process input. A
positive sign shows that the output variable increases with an increase in the input variable and a negative
sign shows that the output variable decreases with an increase in the input variable. The units depend on
the process considered that depend on the variables mentioned.

As previously mentioned, controllers vary in the way they correlate the controller input (error) to the
controller output (actuating signal). The most commonly used controllers are the proportional- integral-
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derivative (PID) controllers. PID controllers relate the error to the actuating signal either in a proportional
(P), integral (I), or derivative (D) manner. PID controllers can also relate the error to the actuating signal
using a combination of these controls.

Proportional (P) Control

Proportional control is the simplest form of continuous control that can be used in a closed-looped system.
P-only control minimizes the fluctuation in the process variable, but it does not always bring the system to
the desired set point. This deviation is known as the offset, and it is usually not desired in a process. The
existence of an offset implies that the system could not be maintained at the desired set point at steady
state. It is analogous to the systematic error in a calibration curve, where there is always a set, constant
error that prevents the line from crossing the origin. The offset can be minimized by combining P-only
control with another form of control, such as |- or D- control.

Mathematical Equations

P-control linearly correlates the controller output (actuating signal) to the error (difference between
measured signal and set point). This P-control behavior is mathematically illustrated in Equation 1.

c(t) = Kce(t)+b (1)

citl = controller owtmut

Ke = controllar gain

™
eril - e

b = bias

As can be seen from the above equation, P-only control provides a linear relationship between the error of
a system and the controller output of the system. . Combined with the bias, this algorithm determines the
action that the controller should take. A graphical representation of the P-controller output for a step
increase in input at time t0 is shown below in Figure 2. This graph is exactly similar to the step input graph
itself.
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P-Controller
Cutput

Figure 2. P-controller output for step input.

Integral (1) Control

Integral control is a second form of feedback control. It is often used because it is able to remove any
deviations that may exist. Thus, the system returns to both steady state and its original setting. A negative
error will cause the signal to the system to decrease, while a positive error will cause the signal to increase.
However, |-only controllers are much slower in their response time than P-only controllers because they
are dependent on more parameters. If it is essential to have no offset in the system, then an I-only
controller should be used, but it will require a slower response time. This slower response time can be
reduced by combining I-only control with another form, such as P or PD control. The philosophy behind the
integral control is that deviations will be affected in proportion to the cumulative sum of their magnitude.
The key advantage of adding a I-control to your controller is that it will eliminate the offset. The
disadvantages are that it can destabilize the controller, and there is an integrator windup, which increases
the time it takes for the controller to make changes.

Mathematical Equations
I-control correlates the controller output to the integral of the error. The integral of the error is taken with

respect to time. It is the total error associated over a specified amount of time. This |-control behavior is
mathematically illustrated in Equation 2.

c@)= + (&)

1
T: [eCddr ()

cit) = controller output

Tt = meegral time
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glfl = error
o 4! N 1y N N N N
ctill) = controller owtput before integration

Steady state error for a Step input -
YE_ 6@

RE) L+ Ggl5)

Yg)= Elg)i, (5l

= = - sREY  _ i 1
= lme@) =g tO = IR e - Blree 1ta_

0

In this equation, the integral time is the amount of time that it takes for the controller to change its output
by a value equal to the error. The controller output before integration is equal to either the initial output at
time t=0, or the controller output at the time one step before the measurement. As expected, this graph
represents the area under the step input graph.

I-Controller
Chutput

Figure 3. I-controller output for step input.

Derivative (D) Control

Unlike P-only and l-only controls, D-control is a form of feed forward control. D-control anticipates the
process conditions by analyzing the change in error. It functions to minimize the change of error, thus
keeping the system at a consistent setting. The primary benefit of D controllers is to resist change in the
system, the most important of these being oscillations. The control output is calculated based on the rate
of change of the error with time. The larger the rate of the change in error, the more pronounced the
controller response will be.

Unlike proportional and integral controllers, derivative controllers do not guide the system to a steady
state. Because of this property, D controllers must be coupled with P, | or Pl controllers to properly control

the system.

Mathematical Equations
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D-control correlates the controller output to the derivative of the error. The derivative of the error is taken

with respect to time. It is the change in error associated with change in time. This D-control behavior is
mathematically illustrated in Equation 3.

de
CCF] = T,: E

3)

et} = controlier output

Td = dertvetive tine consrant
de = change n error

gr = changein time

A graphical representation of the D-controller output for a step increase in input at time t0 is shown below
in Figure 4. As expected, this graph represents the derivative of the step input graph.

D-Controller
Chutput

Figure 4. D-controller output for step input.
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Lecture - 39, 40

Pl, PID controllers, Zeigler-Nichols method of tuning PID controllers

Proportional-Integral (PI) Control

One combination is the Pl-control, which lacks the D-control of the PID system. Pl control is a form of
feedback control. It provides a faster response time than l-only control due to the addition of the
proportional action. Pl control stops the system from fluctuating, and it is also able to return the system to
its set point. Although the response time for Pl-control is faster than l-only control, it is still up to 50%
slower than P-only control. Therefore, in order to increase response time, Pl control is often combined
with D-only control.

Mathematical Equations

Pl-control correlates the controller output to the error and the integral of the error. This Pl-control
behavior is mathematically illustrated in Equation 4.

@)= K. (e('s:' - fe('s)afr)+ ¢ “

cit) = controller output
Kc = contreiler gein

Tt = meegral time

L = mniiial value o coalrallsr

In this equation, the integral time is the time required for the I-only portion of the controller to match the
control provided by the P-only part of the controller.
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The Pl-controller can also be seen as a combination of the P-only and I-only control equations. The bias
term in the P-only control is equal to the integral action of the I-only control. The P-only control is only in
action when the system is not at the set point. When the system is at the set point, the error is equal to
zero, and the first term drops out of the equation. The system is then being controlled only by the I-only
portion of the controller. Should the system deviate from the set point again, P-only control will be
enacted. A graphical representation of the Pl-controller output for a step increase in input at time fa is
shown below in Figure 5.

Pl-controller
output

tme o

Figure 5. PI-controller output for step input.

Effects of K. and T;

With a PI control system, controller activity (aggressiveness) increases as Kc and Ti decreases, however
they can act individually on the aggressiveness of a controller’s response. Consider Figure 6 below with the
center graph being a linear second order system base case.
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The plot depicts how Ti and Kc both affect the performance of a system, whether they are both affecting it
or each one is independently doing so. Regardless of integral time, increasing controller gain (moving form
bottom to top on the plot) will increase controller activity. Similarly, decreasing integral time (moving right
to left on the plot) will increase controller activity independent of controller gain. As expected, increasing

Control Systems

Impact of Kc and Ti on Performance for P| Controlier Form; CO=CO. . +Kc e(t) + % ie(t}dt
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Figure 6. Effects of K; and T; [2]

Kc and decreasing Ti would compound sensitivity and create the most aggressive controller scenario.

Another noteworthy observation is the plot with a normal Kc and double Ti. The plot depicts how the
proportional term is practical but the integral is not receiving enough weight initially, causing the slight

oscillation before the integral term can finally catch up and help the system towards the set point.

Proportional-Derivative (PD) Control
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Another combination of controls is the PD-control, which lacks the I-control of the PID system. PD-control
is combination of feed-forward and feedback control, because it operates on both the current process
conditions and predicted process conditions. In PD-control, the control output is a linear combination of
the error signal and its derivative. PD-control contains the proportional control’s damping of the
fluctuation and the derivative control’s prediction of process error.

Mathematical Equations

As mentioned, PD-control correlates the controller output to the error and the derivative of the error. This
PD-control behavior is mathematically illustrated in Equation 5.

e(t]=f€,;(e('r]+T¢g]+c 5)

et} = contreller output
Fe = proportional gain
g = error

O = il volue of coutrellesr

The equation indicates that the PD-controller operates like a simplified PID-controller with a zero integral
term. Alternatively, the PD-controller can also be seen as a combination of the P-only and D-only control
equations. In this control, the purpose of the D-only control is to predict the error in order to increase
stability of the closed loop system. P-D control is not commonly used because of the lack of the integral
term. Without the integral term, the error in steady state operation is not minimized. P-D control is usually
used in batch pH control loops, where error in steady state operation does not need to be minimized. In
this application, the error is related to the actuating signal both through the proportional and derivative
term. A graphical representation of the PD-controller output for a step increase in input at time t0 is shown
below in Figure 6. Again, this graph is a combination of the P-only and D-only graphs, as expected.
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PD-Controller
Cutput

Figure 12. PD-controller output for step input.

Proportional-Integral-Derivative (PID) Control

Proportional-integral-derivative control is a combination of all three types of control methods. PID-control
is most commonly used because it combines the advantages of each type of control. This includes a quicker
response time because of the P-only control, along with the decreased/zero offset from the combined
derivative and integral controllers. This offset was removed by additionally using the I-control. The addition
of D-control greatly increases the controller's response when used in combination because it predicts
disturbances to the system by measuring the change in error. On the contrary, as mentioned previously,
when used individually, it has a slower response time compared to the quicker P-only control. However,
although the PID controller seems to be the most adequate controller, it is also the most expensive
controller. Therefore, it is not used unless the process requires the accuracy and stability provided by the
PID controller.

Mathematical Equations

PID-control correlates the controller output to the error, integral of the error, and derivative of the error.
This PID-control behavior is mathematically illustrated in Equation 6.

(@)= k. (ec'sl + = folddt +T; g) +C ©

et} = contreller output

Ko = controlier gain
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Tt = mibegral time

Td = deripative timre consrant

L = mbtitial value of contreller

As shown in the above equation, PID control is the combination of all three types of control. In this
equation, the gain is multiplied with the integral and derivative terms, along with the proportional term,
because in PID combination control, the gain affects the | and D actions as well. Because of the use of
derivative control, PID control cannot be used in processes where there is a lot of noise, since the noise
would interfere with the predictive, feed-forward aspect. A graphical representation of the PID-controller
output for a step increase in input at time t0 is shown below in Figure 7. This graph resembles the
gualitative combination of the P-only, I-only, and D-only graphs.

PID-Controller
Cutput

tn
Figure 7. PID-controller output for step input.

In addition to PID-control, the P-, |-, and D- controls can be combined in other ways. These alternative
combinations are simplifications of the PID-control.

Summary Tables

A summary of the advantages and disadvantages of the three controls is shown below is shown in Table 1.

Table 1. Advantages and disadvantages of controls

Proportional (P) | Integral (1) | Derivative (D) |
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Advantages Fast response time

Minimizes fluctuation

Reduces steady state

CITor.

Improves stability

Controls  process  with
rapidly changing outputs

Disadvantages | Contains large offset

Does not bring system to
desired set point

Slow response time

Reduces stability margins

Highly sensitive to noise

Requires  combined
with another controller

use

Effects of Coefficients:

Parameter | Speed of Response| Stability | Accuracy
Increasing K Increases Deteriorate| Improves
Increasing K; Decreases Deteriorate| Improves
Increasing Kq4 Increases Improves | No impact

What is tuning?

Tuning is adjustment of control parameters to the optimum values for the desired control response.
Stability is a basic requirement. However, different systems have different behavior, different applications

have different requirements, and requirements may conflict with one another.

Ziegler—Nichols tuning method:

This method was introduced by John G. Ziegler and Nathaniel B. Nichols in the 1940s. The Ziegler-
Nichols’ closed loop method is based on experiments executed on an established control loop (a real

system or a simulated system).

Closed Loop (Feedback Loop)

1. Remove integral and derivative action. Set integral time (T;) to 999 or its largest value and set the
derivative controller (Ty) to zero.

2. Create a small disturbance in the loop by changing the set point. Adjust the proportional, increasing
and/or decreasing, the gain until the oscillations have constant amplitude.

3. Record the gain value (K,) and period of oscillation (P,).

4. Plug these values into the Ziegler-Nichols closed loop equations and determine the necessary
settings for the controller.
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PV
Set point Change K,
changed until oscillations Constant
and K, increased are constant amplitude
to 3

oscillation obtained
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| 1 K,increase .
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{not enough), K, =4 | | period
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Figure 1. System tuned using the Ziegler-Nichols closed-loop tuning method

k.| T | Ts
P
2
PI | & | &
2.2 | 1.2
PID | & | & | &
1712 | ®

Advantages

1. Easy experiment; only need to change the P controller
2. Includes dynamics of whole process, which gives a more accurate picture of how the system is
behaving

Disadvantages
1. Experiment can be time consuming

2. Can venture into unstable regions while testing the P controller, which could cause the system to
become out of control
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Ziegler-Nichols Open-Loop Tuning Method or Process Reaction Method -

This method remains a popular technique for tuning controllers that use proportional, integral, and
derivative actions. The Ziegler-Nichols open-loop method is also referred to as a process reaction method,
because it tests the open-loop reaction of the process to a change in the control variable output. This basic
test requires that the response of the system be recorded, preferably by a plotter or computer. Once
certain process response values are found, they can be plugged into the Ziegler-Nichols equation with
specific multiplier constants for the gains of a controller with either P, PI, or PID actions.

In this method, the variables being measured are those of a system that is already in place. A disturbance is
introduced into the system and data can then be obtained from this curve. First the system is allowed to
reach steady state, and then a disturbance, X,, is introduced to it. The percentage of disturbance to the
system can be introduced by a change in either the set point or process variable. For example, if you have a
thermometer in which you can only turn it up or down by 10 degrees, then raising the temperature by 1
degree would be a 10% disturbance to the system. These types of curves are obtained in open loop
systems when there is no control of the system, allowing the disturbance to be recorded. The process
reaction curve method usually produces a response to a step function change for which several parameters
may be measured which include: transportation lag or dead time, Tgeqq, the time for the response to
change, 1, and the ultimate value that the response reaches at steady-state, M,.

Tdead = transportation lag or dead time: the time taken from the moment the disturbance was introduced
to the first sign of change in the output signal

T = the time for the response to occur
X, = the size of the step change

M, = the value that the response goes to as the system returns to steady-state

T
R= LEGG
T
Xo T
g = 1_'3
5”1:,: Tazad

An example for determining these parameters for a typical process response curve to a step change is
shown below.

In order to find the values for T4 and 1, a line is drawn at the point of inflection that is tangent to the
response curve and then these values are found from the graph.
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Step Change in the Input

1.2 ¢+

180 bmemmmm T e e Ll i My=1.0
4 : Response Curve
1

Line Tangent to [
Response Curve %,/

Process Variable

15 20

Tdead = 4 T=0.1-4=35.1

To use the Ziegler-Nichols open-loop tuning method, you must perform the following steps:

1. Make an open loop step test
2. From the process reaction curve determine the transportation lag or dead time, Tgeqq, the time
constant or time for the response to change, 1, and the ultimate value that the response reaches at
steady-state, M,, for a step change of Xo.
X )
Ky =~

3. Determine the loop tuning constants. Plug in the reaction rate and lag time values to the Ziegler-
Nichols open-loop tuning equations for the appropriate controller—P, Pl, or PID—to calculate the
controller constants. Use the table below.

Table 2. Open-Loop Calculations of K, Ti, Tg

K- T; n

PI ':[.E H.: 3:3 Tﬁ;gg‘
PID l..'.: HI] 2 Taemd t:['E Toead
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Advantages

1. Quick and easier to use than other methods

It is a robust and popular method
3. Of these two techniques, the Process Reaction Method is the easiest and least disruptive to

implement

N

Disadvantages

1. It depends upon purely proportional measurement to estimate | and D controllers.
2. Approximations for the K., T;, and T, values might not be entirely accurate for different systems.
3. It does not hold for I, D and PD controllers

Example 1

Problem

You're a controls engineer working for Flawless Design company when your optimal controller breaks
down. As a backup, you figure that by using coarse knowledge of a classical method, you may be able to
sustain development of the product. After adjusting the gain to one set of data taken from a controller,
you find that your ultimate gain is 4.3289.

From the adjusted plot below, determine the type of loop this graph represents; then, please calculate K,
T;, and T, for all three types of controllers.

Sinusoidal Curve

15

=
[iy]

Sin(time)

'
=
4]

-15
Time

Solution

From the fact that this graph oscillates and is not a step function, we see that this is a closed loop. Thus,
the values will be calculated accordingly.
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We're given the Ultimate gain, K, = 4.3289. From the graph below, we see that the ultimate period at this
gainis P, =6.28

Sinusoidal Curve

(=]
o

=
[t

Sin{time)

=
o

~2Pior £.28s

Time

From this, we can calculate the K, T;, and T, for all three types of controllers. The results are tabulated
below. (Results were calculated from the Ziegler-Nichols closed-loop equations.)

K. T; Tp
7, | 4.3289 P |2.1645
B 6.28 PI | 1.9677 | 5.2333
PID | 2.5464 | 3.14 | 0.785

Example 2

Problem

Your partner finds another set of data after the controller breaks down and decides to use the Cohen-Coon
method because of the slow response time for the system. They also noticed that the control dial, which
goes from 0-8, was set at 3 instead of 1. Luckily the response curve was obtained earlier and is illustrated
below. From this data he wanted to calculate K., T; and T,. Help him to determine these values. Note that
the y-axis is percent change in the process variable.
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Solution

In order to solve for K, T; and T4, you must first determine L, AC,, and T. All of these values may be
calculated by the reaction curve given.

7a

60

M

ﬁﬁu

5 & Cp /

> 40

v

5 /

2 a0

2 /

. ag

z &

10 -

D 1
M T T T T T T
u\z 4 6 B 10 12 14 16

time (t)

From the process reaction curve we can find that:
L=3

T=11

AC, = 0.55 (55%)

Now that these three values have been found N and R may be calculated using the equations below.

“
ac,

N = —=

N
AC,

L
R=?=
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Using these equations you find that

N =.05

R=0.27

We also know that since the controller was moved from 1 to 3, so a 200% change.
P=2.00

We use these values to calculate K, T;, and Ty, for the three types of controllers

K. T: | Ta
P |14.53
PI | 123 ]6.42

PID | 18.68 | 6.65 | 1.04

BPUT Page 123



