
BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, 
ODISHA 

Short Type 
Questions and Answers 

on 

 

Prepared by, 

Dr. Subhendu Kumar Rath, 

BPUT, Odisha.

OPERATING SYSTEM



OPERATING SYSTEM (SHORT QUESTION AND ANSWERS) 

By Dr.S.K.Rath, BPUT 

1. Explain the concept of Reentrancy?

It is a useful, memory-saving technique for multiprogrammed timesharing systems. 
A Reentrant Procedure is one in which multiple users can share a single copy of a 
program during the same period. Reentrancy has 2 key aspects: The program code 
cannot modify itself, and the local data for each user process must be stored 
separately. Thus, the permanent part is the code, and the temporary part is the 
pointer back to the calling program and local variables used by that program. Each 
execution instance is called activation. It executes the code in the permanent part, 
but has its own copy of local variables/parameters. The temporary part associated 
with each activation is the activation record. Generally, the activation record is 
kept on the stack. 

Note: A reentrant procedure can be interrupted and called by an interrupting 
program, and still execute correctly on returning to the procedure. 

2. Explain Belady's Anomaly?

Also called FIFO anomaly. Usually, on increasing the number of frames allocated 
to a process virtual memory, the process execution is faster, because fewer page 
faults occur. Sometimes, the reverse happens, i.e., the execution time increases 
even when more frames are allocated to the process. This is Belady's Anomaly. 
This is true for certain page reference patterns. 

3. What is a binary semaphore? What is its use?

A binary semaphore is one, which takes only 0 and 1 as values. They are used to 
implement mutual exclusion and synchronize concurrent processes. 

4. What is thrashing?

It is a phenomenon in virtual memory schemes when the processor spends most of 
its time swapping pages, rather than executing instructions. This is due to an 
inordinate number of page faults. 

5. List the Coffman's conditions that lead to a deadlock.



1. Mutual Exclusion: Only one process may use a critical resource at a time.  
2. Hold & Wait: A process may be allocated some resources while waiting for 

others.  
3. No Pre-emption: No resource can be forcible removed from a process 

holding it.  
4. Circular Wait: A closed chain of processes exist such that each process 

holds at least one resource needed by another process in the chain.  

6. What are short, long and medium-term scheduling? 

Long term scheduler determines which programs are admitted to the system for 
processing. It controls the degree of multiprogramming. Once admitted, a job 
becomes a process. 

Medium term scheduling is part of the swapping function. This relates to 
processes that are in a blocked or suspended state. They are swapped out of real-
memory until they are ready to execute. The swapping-in decision is based on 
memory-management criteria. 

Short term scheduler, also know as a dispatcher executes most frequently, and 
makes the finest-grained decision of which process should execute next. This 
scheduler is invoked whenever an event occurs. It may lead to interruption of one 
process by preemption. 

7. What are turnaround time and response time? 

Turnaround time is the interval between the submission of a job and its 
completion. Response time is the interval between submission of a request, and the 
first response to that request. 

8. What are the typical elements of a process image? 

User data: Modifiable part of user space. May include program data, user stack 
area, and programs that may be modified. 

User program: The instructions to be executed. 

System Stack: Each process has one or more LIFO stacks associated with it. Used 
to store parameters and calling addresses for procedure and system calls. 

Process control Block (PCB): Info needed by the OS to control processes. 



9. What is the Translation Lookaside Buffer (TLB)? 

In a cached system, the base addresses of the last few referenced pages is 
maintained in registers called the TLB that aids in faster lookup. TLB contains 
those page-table entries that have been most recently used. Normally, each virtual 
memory reference causes 2 physical memory accesses- one to fetch appropriate 
page-table entry, and one to fetch the desired data. Using TLB in-between, this is 
reduced to just one physical memory access in cases of TLB-hit. 

10. What is the resident set and working set of a process? 

Resident set is that portion of the process image that is actually in real-memory at a 
particular instant. Working set is that subset of resident set that is actually needed 
for execution. (Relate this to the variable-window size method for swapping 
techniques.) 

11. When is a system in safe state? 

The set of dispatchable processes is in a safe state if there exists at least one 
temporal order in which all processes can be run to completion without resulting in 
a deadlock. 

12. What is cycle stealing? 

We encounter cycle stealing in the context of Direct Memory Access (DMA). 
Either the DMA controller can use the data bus when the CPU does not need it, or 
it may force the CPU to temporarily suspend operation. The latter technique is 
called cycle stealing. Note that cycle stealing can be done only at specific break 
points in an instruction cycle. 

13. What is meant by arm-stickiness? 

If one or a few processes have a high access rate to data on one track of a storage 
disk, then they may monopolize the device by repeated requests to that track. This 
generally happens with most common device scheduling algorithms (LIFO, SSTF, 
C-SCAN, etc). High-density multisurface disks are more likely to be affected by 
this than low density ones. 

14. What are the stipulations of C2 level security? 

C2 level security provides for:  



1. Discretionary Access Control  
2. Identification and Authentication  
3. Auditing  
4. Resource reuse  

15. What is busy waiting? 

The repeated execution of a loop of code while waiting for an event to occur is 
called busy-waiting. The CPU is not engaged in any real productive activity during 
this period, and the process does not progress toward completion. 

16. Explain the popular multiprocessor thread-scheduling strategies. 

1. Load Sharing: Processes are not assigned to a particular processor. A global 
queue of threads is maintained. Each processor, when idle, selects a thread 
from this queue. Note that load balancing refers to a scheme where work is 
allocated to processors on a more permanent basis.  

2. Gang Scheduling: A set of related threads is scheduled to run on a set of 
processors at the same time, on a 1-to-1 basis. Closely related threads / 
processes may be scheduled this way to reduce synchronization blocking, 
and minimize process switching. Group scheduling predated this strategy.  

3. Dedicated processor assignment: Provides implicit scheduling defined by 
assignment of threads to processors. For the duration of program execution, 
each program is allocated a set of processors equal in number to the number 
of threads in the program. Processors are chosen from the available pool.  

4. Dynamic scheduling: The number of thread in a program can be altered 
during the course of execution.  

17. When does the condition 'rendezvous' arise? 

In message passing, it is the condition in which, both, the sender and receiver are 
blocked until the message is delivered. 

18. What is a trap and trapdoor? 

Trapdoor is a secret undocumented entry point into a program used to grant access 
without normal methods of access authentication. A trap is a software interrupt, 
usually the result of an error condition. 

19. What are local and global page replacements? 



Local replacement means that an incoming page is brought in only to the relevant 
process address space. Global replacement policy allows any page frame from any 
process to be replaced. The latter is applicable to variable partitions model only. 

20. Define latency, transfer and seek time with respect to disk I/O. 

Seek time is the time required to move the disk arm to the required track. 
Rotational delay or latency is the time it takes for the beginning of the required 
sector to reach the head. Sum of seek time (if any) and latency is the access time. 
Time taken to actually transfer a span of data is transfer time. 

21. Describe the Buddy system of memory allocation. 

Free memory is maintained in linked lists, each of equal sized blocks. Any such 
block is of size 2^k. When some memory is required by a process, the block size of 
next higher order is chosen, and broken into two. Note that the two such pieces 
differ in address only in their kth bit. Such pieces are called buddies. When any 
used block is freed, the OS checks to see if its buddy is also free. If so, it is 
rejoined, and put into the original free-block linked-list. 

22. What is time-stamping? 

It is a technique proposed by Lamport, used to order events in a distributed system 
without the use of clocks. This scheme is intended to order events consisting of the 
transmission of messages. Each system 'i' in the network maintains a counter Ci. 
Every time a system transmits a message, it increments its counter by 1 and 
attaches the time-stamp Ti to the message. When a message is received, the 
receiving system 'j' sets its counter Cj to 1 more than the maximum of its current 
value and the incoming time-stamp Ti. At each site, the ordering of messages is 
determined by the following rules: For messages x from site i and y from site j, x 
precedes y if one of the following conditions holds....(a) if Ti<Tj or (b) if Ti=Tj 
and i<j. 

23. How are the wait/signal operations for monitor different from those for 
semaphores? 

If a process in a monitor signal and no task is waiting on the condition variable, the 
signal is lost. So this allows easier program design. Whereas in semaphores, every 
operation affects the value of the semaphore, so the wait and signal operations 
should be perfectly balanced in the program. 



24. In the context of memory management, what are placement and 
replacement algorithms? 

Placement algorithms determine where in available real-memory to load a 
program. Common methods are first-fit, next-fit, best-fit. Replacement algorithms 
are used when memory is full, and one process (or part of a process) needs to be 
swapped out to accommodate a new program. The replacement algorithm 
determines which are the partitions to be swapped out. 

25. In loading programs into memory, what is the difference between load-
time dynamic linking and run-time dynamic linking? 

For load-time dynamic linking: Load module to be loaded is read into memory. 
Any reference to a target external module causes that module to be loaded and the 
references are updated to a relative address from the start base address of the 
application module. 

With run-time dynamic loading: Some of the linking is postponed until actual 
reference during execution. Then the correct module is loaded and linked. 

26. What are demand-paging and pre-paging? 

With demand paging, a page is brought into memory only when a location on that 
page is actually referenced during execution. With pre-paging, pages other than the 
one demanded by a page fault are brought in. The selection of such pages is done 
based on common access patterns, especially for secondary memory devices. 

27. Paging a memory management function, while multiprogramming a 
processor management function, are the two interdependent? 

Yes. 

28. What is page cannibalizing? 

Page swapping or page replacements are called page cannibalizing. 

29. What has triggered the need for multitasking in PCs? 

1. Increased speed and memory capacity of microprocessors together with the 
support fir virtual memory and  

2. Growth of client server computing  



30. What are the four layers that Windows NT have in order to achieve 
independence? 

1. Hardware abstraction layer  
2. Kernel  
3. Subsystems  
4. System Services.  

31. What is SMP? 

To achieve maximum efficiency and reliability a mode of operation known as 
symmetric multiprocessing is used. In essence, with SMP any process or threads 
can be assigned to any processor. 

32. What are the key object oriented concepts used by Windows NT? 

Encapsulation, Object class and instance. 

33. Is Windows NT a full blown object oriented operating system? Give 
reasons. 

No Windows NT is not so, because its not implemented in object oriented 
language and the data structures reside within one executive component and are 
not represented as objects and it does not support object oriented capabilities. 

34. What is a drawback of MVT? 

It does not have the features like  

1. ability to support multiple processors  
2. virtual storage  
3. source level debugging  

35. What is process spawning? 

When the OS at the explicit request of another process creates a process, this action 
is called process spawning. 

36. How many jobs can be run concurrently on MVT? 

15 jobs. 



37. List out some reasons for process termination. 

1. Normal completion  
2. Time limit exceeded  
3. Memory unavailable  
4. Bounds violation  
5. Protection error  
6. Arithmetic error  
7. Time overrun  
8. I/O failure  
9. Invalid instruction  
10. Privileged instruction  
11. Data misuse  
12. Operator or OS intervention  
13. Parent termination.  

38. What are the reasons for process suspension? 

1. swapping  
2. interactive user request  
3. timing  
4. parent process request  

39. What is process migration? 

It is the transfer of sufficient amount of the state of process from one machine to 
the target machine. 

40. What is mutant? 

In Windows NT a mutant provides kernel mode or user mode mutual exclusion 
with the notion of ownership. 

41. What is an idle thread? 

The special thread a dispatcher will execute when no ready thread is found. 

42. What is FtDisk? 

It is a fault tolerance disk driver for Windows NT. 



43. What are the possible threads a thread can have? 

1. Ready  
2. Standby  
3. Running  
4. Waiting  
5. Transition  
6. Terminated  

44. What are rings in Windows NT? 

Windows NT uses protection mechanism called rings provides by the process to 
implement separation between the user mode and kernel mode. 

45. What is Executive in Windows NT? 

In Windows NT, executive refers to the operating system code that runs in kernel 
mode. 

46. What are the sub-components of I/O manager in Windows NT? 

1. Network redirector/ Server  
2. Cache manager.  
3. File systems  
4. Network driver  
5. Device driver  

47. What are DDks? Name an operating system that includes this feature. 

DDks are device driver kits, which are equivalent to SDKs for writing device 
drivers. Windows NT includes DDks. 

48. What level of security does Windows NT meets? 

C2 level security. 

 

 

 



Previous Year Question and Answer  
Subject- Operating System  

Q.1)(a) What is Throughput, Turnaround time, Waiting time and Response 
time? 
Ans:  Throughput is defined as the number of processes that complete their 
execution per unit time. 
Turnaround time is the amount of time to execute a particular process. 
Waiting time is the amount of time a process has been waiting in the ready queue. 
Response time is the amount of time it takes from when a request was submitted 
until the first response is produced, not output (for time-sharing environment) 
(b) What is  Reentrancy? 
Ans: A computer program or subroutine is called reentrant if it can be interrupted 
in the middle of its execution and then safely called again ("re-entered") before its 
previous invocations complete execution. The interruption could be caused by an 
internal action such as a jump or call, or by an external action such as a hardware 
interrupt or signal. Once the reentered invocation completes, the previous 
invocations will resume correct execution. 
(c) What is the difference between Hard and Soft real time Systems? 
Ans:  A hard real-time system guarantees that critical tasks be completed on time. 
This goal requires that all delays in the system be bounded, from the retrieval of 
stored data to the time that it takes the operating system to finish any request made 
of it. Such time constraints dictate the facilities that are available in hard real-time 
systems. 

A soft real-time system is a less restrictive type of real-time system. Here, a 
critical real-time task gets priority over other tasks and retains that priority until it 
completes. Soft real time system can be mixed with other types of systems. Due to 
less restriction, they are risky to use for industrial control and robotics. 
(d) What resources are used when a thread created? How do the differ from 
those when a process is created? 
Ans: Because a thread is smaller than a process, thread creation typically uses 
fewer resources than process creation. Creating a process requires allocating a 
process control block (PCB), a rather large data structure. The PCB includes a 
memory map, list of open files, and environment variables. Allocating and 
managing the memory map is typically the most time-consuming activity. Creating 
either a user or kernel thread involves allocating a small data structure to hold a 
register set, stack, and priority. 

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Hardware_interrupt
http://en.wikipedia.org/wiki/Hardware_interrupt
http://en.wikipedia.org/wiki/Hardware_interrupt
http://en.wikipedia.org/wiki/Signal_%28computing%29


(e) What is a binary semaphore? What is its use? 
Ans: A binary semaphore is a semaphore with an integer value that can range only 
between 0 and 1. A binary semaphore can be simpler to implement than a counting 
semaphore, depending on the underlying hardware architecture. 
(f) What is the difference between synchronization and mutual exclusion? 
Ans: If one process is executing in its critical section then no other process is 
allowed to enter it critical section. This is called mutual exclusion. 
Synchronization refers to one of two distinct but related concepts: 
synchronization of processes, and synchronization of data. Process 
synchronization refers to the idea that multiple processes are to join up or 
handshake at a certain point, in order to reach an agreement or commit to a certain 
sequence of action. Data synchronization refers to the idea of keeping multiple 
copies of a dataset in coherence with one another, or to maintain data integrity. 
Process synchronization primitives are commonly used to implement data 
synchronization. 
g) List the Coffman’s conditions that lead to a deadlock. 
Ans: A deadlock situation can arise if and only if all of the following conditions 
hold simultaneously in a system:  

1. Mutual Exclusion: At least one resource must be non-shareable. Only one 
process can use the resource at any given instant of time. 

2. Hold and Wait or Resource Holding: A process is currently holding at 
least one resource and requesting additional resources which are being held 
by other processes. 

3. No Preemption: The operating system must not de-allocate resources once 
they have been allocated; they must be released by the holding process 
voluntarily. 

4. Circular Wait: A process must be waiting for a resource which is being 
held by another process, which in turn is waiting for the first process to 
release the resource. In general, there is a set of waiting processes, P = {P1, 
P2, ..., PN}, such that P1 is waiting for a resource held by P2, P2 is waiting 
for a resource held by P3 and so on till PN is waiting for a resource held by 
P1.  

These four conditions are known as the Coffman conditions from their first 
description in a 1971 article by Edward G. Coffman. 

h)Explain Belady’s Anomaly. 

http://en.wikipedia.org/wiki/Process_%28computer_science%29
http://en.wikipedia.org/wiki/Dataset
http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Mutually_exclusive_events
http://en.wikipedia.org/wiki/Preemption_(computing)
http://en.wikipedia.org/wiki/Circular_reference
http://en.wikipedia.org/wiki/Set_(mathematics)


Ans: 
 
2)(a) Name the three types of schedulers and give functions of each. 
Ans: Three types of CPU schedulers are FCFS, SJF and Priority scheduling. 
First-Come, First-Served Scheduling 

By far the simplest CPU-scheduling algorithm is the first-come, first-served 
(FCFS) scheduling algorithm. With this scheme, the process that requests the CPU 
first is allocated the CPU first. The implementation of the FCFS policy is easily 
managed with a FIFO queue. When a process enters the ready queue, its PCB is 
linked onto the tail of the queue. When the CPU is free, it is allocated to the 
process at the head of the queue. The running process is then removed from the 
queue. The code for FCFS scheduling is simple to write and understand. The 
average waiting time under the FCFS policy, however, is often quite long.  

Consider the following set of processes that arrive at time 0, with the length 
of the CPU-burst time given in milliseconds: 

Process   Burst Time 

PI    24 

P2    3 

P3    3 

If the processes arrive in the order PI, P2, P3, and are served in FCFS order, we get 
the result shown in the following Gantt chart:  

P1 P2 P3 

  0                                                                                                            24          27           
30 

The waiting time is 0 milliseconds for process PI, 24 milliseconds for process PZ, 
and 27 milliseconds for process P3. Thus, the average waiting time is (0 + 24 + 
27)/3 = 17 milliseconds. If the processes arrive in the order P2, P3, Pl, however, 
the results will be as shown in the following Gantt chart: 



P2 P3 P1 

  0         3          6                                                                                         30 

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction is 
substantial. Thus, the average waiting time under a FCFS policy is generally not 
minimal, and may vary substantially if the process CPU-burst times vary greatly.  

In addition, consider the performance of FCFS scheduling in a dynamic 
situation. Assume we have one CPU-bound process and many I/O-bound 
processes. As the processes flow around the system, the following scenario may 
result. The CPU-bound process will get the CPU and hold it. During this time, all 
the other processes will finish their I/O and move into the ready queue, waiting for 
the CPU. While the processes wait in the ready queue, the I/O devices are idle. 
Eventually, the CPU-bound process finishes its CPU burst and moves to an I/O 
device. All the I/O-bound processes, which have very short CPU bursts, execute 
quickly and move, back to the I/O queues. At this point, the CPU sits idle.  

The CPU-bound process will then move back to the ready queue and be 
allocated the CPU. Again, all the I/O processes end up waiting in the ready queue 
until the CPU-bound process is done. There is a convoy effect, as all the other 
processes wait for the one big process to get off the CPU. This effect results in 
lower CPU and device utilization than might be possible if the shorter processes 
were allowed to go first. 

 The FCFS scheduling algorithm is non-preemptive. Once the CPU has been 
allocated to a process, that process keeps the CPU until it releases the CPU, either 
by terminating or by requesting I/O. The FCFS algorithm is particularly 
troublesome for time-sharing systems, where each user needs to get a share of the 
CPU at regular intervals. It would be disastrous to allow one process to keep the 
CPU for an extended period. 

Shortest-Job-First Scheduling 

A different approach to CPU scheduling is the shortest-job-first (SJF) 
scheduling algorithm. This algorithm associates with each process the length of the 
latter's next CPU burst. When the CPU is available, it is assigned to the process 
that has the smallest next CPU burst. If two processes have the same length next 



CPU burst, FCFS scheduling is used to break the tie. Note that a more appropriate 
term would be the shortest next CPU burst, because the scheduling is done by 
examining the length of the next CPU burst of a process, rather than its total 
length. We use the term SJF because most people and textbooks refer to this type 
of scheduling discipline as SJF. 

As an example, consider the following set of processes, with the length of 
the CPU-burst time given in milliseconds: 

Process   Burst Time 

PI    6 

p2    8 

p3    7 

p4    3 

Using SJF scheduling, we would schedule these processes according to the 
following Gantt chart: 

P4 P1 P3 P2 

0       3                                      9          16   
 24 

The waiting time is 3 milliseconds for process PI, 16 milliseconds for 
process P2,9 milliseconds for process PS, and 0 milliseconds for process Pq. Thus, 
the average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. If we were using 
the FCFS scheduling scheme, then the average waiting time would be 10.25 
milliseconds. 

The SJF scheduling algorithm is provably optimal, in that it gives the 
minimum average waiting time for a given set of processes. By moving a short 
process before a long one, the waiting time of the short process decreases more 
than it increases the waiting time of the long process. Consequently, the average 
waiting time decreases. 



The real difficulty with the SJF algorithm is knowing the length of the next 
CPU request. For long-term (or job) scheduling in a batch system, we can use as 
the length the process time limit that a user specifies when he submits the job. 

Thus, users are motivated to estimate the process time limit accurately, since 
a lower value may mean faster response. (Too low a value will cause a time-limit 
exceeded error and require resubmission.) SJF scheduling is used frequently in 
long-term scheduling. 

Although the SJF algorithm is optimal, it cannot be implemented at the level 
of short-term CPU scheduling. There is no way to know the length of the next CPU 
burst. One approach is to try to approximate SJF scheduling. We may not know the 
length of the next CPU burst, but we may be able to predict its value.We expect 
that the next CPU burst will be similar in length to the previous ones. 

Thus, by computing an approximation of the length of the next CPU burst, 
we can pick the process with the shortest predicted CPU burst.  

The SJF algorithm may be either preemptive or nonpreemptive. The choice 
arises when a new process arrives at the ready queue while a previous process is 
executing. The new process may have a shorter next CPU burst than what is left of 
the currently executing process. A preemptive SJF algorithm will preempt the 
currently executing process, whereas a nonpreemptive SJF algorithm will allow the 
currently running process to finish its CPU burst. Preemptive SJF scheduling is 
sometimes called shortest-remaining-time-first scheduling. 

As an example, consider the following four processes, with the length of the 
CPU-burst time given in milliseconds: 

Process   Arrival Time   Burst Time 

P1    0    8 

P2    1    4 

P3    2    9 

p4    3    5 



If the processes arrive at the ready queue at the times shown and need the 
indicated burst times, then the resulting preemptive SJF schedule is as depicted in 
the following Gantt chart: 

P1 P2 P4 P1 P3 

 0       1                    5                       10                                17                                             
26 

 

Process PI is started at time 0, since it is the only process in the queue. 
Process PZ arrives at time 1. The remaining time for process P1 (7 milliseconds) is 
larger than the time required by process P2 (4 milliseconds), so process P1 is 
preempted, and process P2 is scheduled. The average waiting time for this example 
is ((10 - 1) + (1 - 1) + (17 - 2) + (5 - 3))/4 = 26/4 = 6.5 milliseconds. A 
nonpreemptive SJF scheduling would result in an average waiting time of 7.75 
milliseconds. 

Priority Scheduling 

The SJF algorithm is a special case of the general priority-scheduling 
algorithm. A priority is associated with each process, and the CPU is allocated to 
the process with the highest priority. Equal-priority processes are scheduled in 
FCFS order. 

An SJF algorithm is simply a priority algorithm where the priority (p) is the 
inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower the 
priority, and vice versa. 

Note that we discuss scheduling in terms of high priority and low priority. 
Priorities are generally some fixed range of numbers, such as 0 to 7, or 0 to 4,095. 
However, there is no general agreement on whether 0 is the highest or lowest 
priority. Some systems use low numbers to represent low priority; others use low 
numbers for high priority. This difference can lead to confusion. In this text, we 
use low numbers to represent high priority. As an example, consider the following 
set of processes, assumed to have arrived at time 0, in the order PI, P2, ..., P5, with 
the length of the CPU-burst time given in milliseconds: 



Process   Burst   Time Priority 

P1    10   3 

p2    1   1 

p3    2   4 

P4    1   5 

P5    5   2 

Using priority scheduling, we would schedule these processes according to 
the following Gantt chart: 

P2 P5 P1 P3 P4 

0        1                                6                                                                       16          
18    19 

The average waiting time is 8.2 milliseconds. Priorities can be defined either 
internally or externally. Internally defined priorities use some measurable quantity 
or quantities to compute the priority of a process. 

(b) Give the queuing diagram representing process scheduling and show the 
action point for the different types of CPU schedulers. 
Ans: A common representation for a discussion of process scheduling is a queuing 
diagram. 

o Each rectangular box represents a queue. Two types of queues are 
present: the ready queue and a set of device queues.  

o The circles represent the resources that serve the queues, and the 
arrows indicate the flow of processes in the system.  

• A new process is initially put in the ready queue. It waits there until it is 
selected for execution, or is dispatched.  

• Once the process is allocated the CPU and is executing, one of several 
events could occur:  

o The process could issue an I/O request and then be placed in an I/O 
queue.  

o The process could create a new subprocess and wait for the 
subprocess's termination.  



o The process could be removed forcibly from the CPU, as a result of an 
interrupt, and be put back in the ready queue.  

• A process continues this cycle until it terminates, at which time it is removed 
from all queues and has its PCB and resources deallocated. 

 
Fig.-Queuing diagram representation of process scheduling 

3)(a)Explain Context switch along with a suitable diagram.Name and briefly 
define the scheduling criteria. List out the circumstances under which a CPU 
scheduling decision may have to be taken by the CPU scheduler. 
Ans: Switching the CPU to another process requires saving the state of the old 
process and loading the saved state for the new process. This task is known as a 
context switch. The context of a process is represented in the PCB of a process; it 
includes the value of the CPU registers, the process state  and memory-
management information. When a context switch occurs, the kernel saves the 
context of the old process in its PCB and loads the saved context of the new 
process scheduled to run.  

Context-switch time is pure overhead, because the system does no useful 
work while switching. Its speed varies from machine to machine, depending on the 
memory speed, the number of registers that must be copied, and the existence of 
special instructions (such as a single instruction to load or store all registers). 
Typical speeds range from 1 to 1000 microseconds.  

Context -switch times are highly dependent on hardware support. For 
instance, some processors (such as the Sun UltraSPARC) provide multiple sets of 
registers. A context switch simply includes changing the pointer to the current 
register set. Of course, if active processes exceed register sets, the system resorts to 
copying register data to and from memory, as before. Also, the more complex the 
operating system, the more work must be done during a context switch. 



 

 

Scheduling Criteria 

• CPU utilization – keep the CPU as busy as possible  
• Throughput – Number of processes that complete their execution per time 

unit 
• Turnaround time – amount of time to execute a particular process 
• Waiting time – amount of time a process has been waiting in the ready 

queue 
• Response time – amount of time it takes from when a request was submitted 

until the first response is produced, not output (for time-sharing 
environment) 

Optimization Criteria 

• Max CPU utilization 
• Max throughput 
• Min turnaround time 
• Min waiting time 
• Min response time 

(b) Assume, we have the workload as shown below. All 5 processes arrive at 
time 0, in the order given below. The length of the CPU burst time is given in 
milliseconds 
Process  : P1 P2 P3 P4 P5 



Burst time : 10 29 3 7 12 
Considering the FCFS, SJF and RR (q=10 ms) scheduling algorithms, which 
algorithm would give the minimum average turnaround time. 
Ans: The Gantt-chart for FCFS scheduling is 

P1 P2 P3 P4 P5 
0                          10               39      42      49 
          61  
Turnaround time = Finished Time – Arrival Time 
Turnaround time for process P1 = 10 – 0 = 10 
Turnaround time for process P2 = 39 – 0 = 39 
Turnaround time for process P3 = 42 – 0 = 42 
Turnaround time for process P4 = 49 – 0 = 49 
Turnaround time for process P5 = 61 – 0 = 61 
Average Turnaround time = (10+39+42+49+61)/5 = 40.2 
The Gantt-chart for SJF scheduling is 
P3 P4 P1 P5 P2 
0     3                     10     20   32                                                                             
61  
Turnaround time for process P1 = 3 – 0 = 3 
Turnaround time for process P2 = 10 – 0 = 10 
Turnaround time for process P3 = 20 – 0 = 20 
Turnaround time for process P4 = 32 – 0 = 32 
Turnaround time for process P5 = 61 – 0 = 61 
Average Turnaround time = (3+10+20+32+61)/5 = 25.2 
The Gantt-chart for RR scheduling is 

P1 P2 P3 P4 P5 P2 P
5 P2 

0                          10     20   23           30                            40                         
50      52         61  
Turnaround time for process P1 = 10 – 0 = 10 



Turnaround time for process P2 = 61 – 0 = 61 
Turnaround time for process P3 = 23 – 0 = 23 
Turnaround time for process P4 = 30 – 0 = 30 
Turnaround time for process P5 = 52 – 0 = 52 
Average Turnaround time = (10+61+23+30+52)/5 = 44.2 
So SJF gives minimum turnaround time. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Previous year Question and Answer  
Subject- Operating System 

 
 
Q.1)(a) What do you mean by graceful degradation in multiprocessor 
systems? 
Ans: The ability to continue providing service proportional to the level of 
surviving hardware is called graceful degradation. 
(b) Define system call. 
Ans: System calls provide an interface between the process and the Operating 
System. System calls allow user-level processes to request some services from the 
operating system which process itself is not allowed to do. 
(c) List the three requirements that must be satisfied by critical section 
problem. 
Ans: A solution to the critical-section problem must satisfy the following three 
requirements:  

1. Mutual Exclusion: If process Pi is executing in its critical section, then no other 
processes can be executing in their critical sections.  

2. Progress: If no process is executing in its critical section and some processes 
wish to enter their critical sections, then only those processes that are not executing 
in their remainder section can participate in the decision on which will enter its 
critical section next, and this selection cannot be postponed indefinitely.  

3. Bounded Waiting: There exists a bound on the number of times that other 
processes are allowed to enter their critical sections after a process has made a 
request to enter its critical section and before that request is granted. 
(i) What is kernel of an Operating System? 
Ans: Kernel is an active part of an OS i.e., it is the part of OS running at all times. 
It is a programs which can interact with the hardware. Ex: Device driver, dll files, 
system files etc. 
3) Consider the following set of processes, with the length of CPU-burst time 
given in milliseconds: 
 Process   Burst Time (ms)   Priority 
 P1    1   1  



 P2    1   1 
 P3    2   3 
 P4    1   4 
 P5    5   2 
The processes are assumed to have arrived in order P1, P2, P3, P4, P5 all at 
time 0. 
(a) Draw Gantt charts illustrating the execution of these processes using 
FCFS, SJF, a non-preemptive priority (a smaller priority implies a higher 
priority) and RR (quantum=1) scheduling. 
(b) What is the turnaround time of each process for each of the scheduling 
algorithms in part (a). 
Ans: The Gantt-chart for FCFS scheduling is 

P1 P2 P3 P4 P5 
        0           1                2                              4              5                                                                       
10   
Turnaround time = Finished Time – Arrival Time 
Turnaround time for process P1 = 1 – 0 = 1 
Turnaround time for process P2 = 2 – 0 = 2 
Turnaround time for process P3 = 4 – 0 = 4 
Turnaround time for process P4 = 5 – 0 = 5 
Turnaround time for process P5 = 10 – 0 = 10 
Average Turnaround time = (1+2+4+5+10)/5 = 4.4 
The Gantt-chart for SJF scheduling is 

P1 P2 P4 P3 P5 
        0              1                2              3                              5                                                                          
10 
Turnaround time for process P1 = 1 – 0 = 1 
Turnaround time for process P2 = 2 – 0 = 2 
Turnaround time for process P3 = 5 – 0 = 5 
Turnaround time for process P4 = 3 – 0 = 3 
Turnaround time for process P5 = 10 – 0 = 10 



Average Turnaround time = (1+2+5+3+10)/5 = 4.2 
The Gantt-chart for Priority scheduling is 

P1 P2 P5 P3 P4 
        0              1                2                                  7                       
9            10   
Turnaround time for process P1 = 1 – 0 = 1 
Turnaround time for process P2 = 2 – 0 = 2 
Turnaround time for process P3 = 9 – 0 = 9 
Turnaround time for process P4 = 10 – 0 = 10 
Turnaround time for process P5 = 7 – 0 = 7 
Average Turnaround time = (1+2+9+10+7)/5 = 5.8 
The Gantt-chart for RR scheduling is 

P1 P2 P3 P4 P5 P3 P5 
         0             1    2    3       4           5               6                     
10 
Turnaround time for process P1 = 1 – 0 = 1 
Turnaround time for process P2 = 2 – 0 = 2 
Turnaround time for process P3 = 6 – 0 = 6 
Turnaround time for process P4 = 4 – 0 = 4 
Turnaround time for process P5 = 10 – 0 = 10 
Average Turnaround time = (1+2+6+4+10)/5 = 4.8 
6) (b) What is a thread? Why is it that threads are faster to create than 
processes? What advantages do kernel threads provide over user threads? 

Ans: A thread is a single sequence stream within in a process. It is also 
called lightweight processes. In a process, threads allow multiple executions of 
streams. The CPU switches rapidly back and forth among the threads giving 
illusion that the threads are running in parallel. A thread can be in any of several 
states (Running, Blocked, Ready or Terminated).  

An operating system that has thread facility, the basic unit of CPU utilization 
is a thread. A thread has or consists of a program counter (PC), a register set, and a 
stack space. Threads are not independent of one other like processes as a result 



threads shares with other threads their code section, data section, OS resources  
such as open files and signals. 

Because a thread is smaller than a process, thread creation typically uses 
fewer resources than process creation.  Creating a process requires allocating a 
process control block (PCB), a rather large data structure. The PCB includes a 
memory map, list of open files, and environment variables. Allocating and 
managing the memory map is typically the most time-consuming activity. Creating 
either a user or kernel thread involves allocating a small data structure to hold a 
register set, stack, and priority. 
Advantage: 
• Because kernel has full knowledge of all threads, Scheduler may decide to give 

more time to a process having large number of threads than process having 
small number of threads.  

• Kernel-level threads are especially good for applications that frequently block. 
8) (a) Explain Readers-Writers problem using semaphores. 

Ans: A data object (such as a file or record) is to be shared among several 
concurrent processes. Some of these processes may want only to read the content 
of the shared object, whereas others may want to update (that is, to read and write) 
the shared object. We distinguish between these two types of processes by 
referring to those processes that are interested in only reading as readers, and to the 
rest as writers. Obviously, if two readers access the shared data object 
simultaneously, no adverse effects will result. However, if a writer and some other 
process (either a reader or a writer) access the shared object simultaneously, chaos 
may ensue. 

To ensure that these difficulties do not arise, we require that the writers have 
exclusive access to the shared object. This synchronization problem is referred to 
as the readers-writers problem. Since it was originally stated, it has been used to 
test nearly every new synchronization primitive. The readers-writers problem has 
several variations, all involving priorities. The simplest one, referred to as the first 
readers-writers problem, requires that no reader will be kept waiting unless a writer 
has already obtained permission to use the shared object. In other words, no reader 
should wait for other readers to finish simply because a writer is waiting. The 
second readers-writers problem requires that, once a writer is ready, that writer 
performs its write as soon as possible. In other words, if a writer is waiting to 
access the object, no new readers may start reading. 



A solution to either problem may result in starvation. In the first case, 
writers may starve; in the second case, readers may starve. For this reason, other 
variants of the problem have been proposed. In this section, we present a solution 
to the first readers-writers problem.  

In the solution to the first readers-writers problem, the reader processes 

share the following data structures: 

semaphore mutex, wrt; 

int readcount; 

The semaphores mutex and wrt are initialized to 1; readcount is initialized to 0. 
The semaphore w r t is common to both the reader and writer processes. The mutex 
semaphore is used to ensure mutual exclusion when the variable readcount is 
updated. The readcount variable keeps track of how many processes are currently 
reading the object. The semaphore wrt functions as a mutual-exclusion semaphore 
for the writers. It is also used by the first or last reader that enters or exits the 
critical section. It is not used by readers who enter or exit while other readers are in 
their critical sections. 

The code for a writer process is 

do{ 

wait (wrt) ; 

. . . 

writing is performed 

... 

signal(wrt); 

}while(1); 

The code for a reader process is  

do{ 



wait (mutex) ; 

readcount++; 

if (readcount == 1) 

wait (wrt) ; 

signal (mutex) ; 

. . . 

reading is performed 

... 

wait (mutex) ; 

readcount--; 

if (readcount == 0) 

signal(wrt1; 

signal (mutex) ; 

}while(1); 

Note that, if a writer is in the critical section and n readers are waiting, then 
one reader is queued on wrt, and n - 1 readers are queued on mutex. Also observe 
that, when a writer executes signal (wrt), we may resume the execution of either 
the waiting readers or a single waiting writer. 

9)(c) Write a note on Semaphore. 
Ans:   A semaphore S is an integer variable that, apart from initialization, is 
accessed only through two standard atomic operations: wait and signal. These 
operations were originally termed P (for wait; from the Dutch proberen, to test) 
and V (for signal; from verhogen, to increment). The classical definition of wait in 
pseudocode is 

wait(S) { 



while (S <= 0) 

; // no-op 

S --; 

} 

The classical definitions of signal in pseudocode is 

Signal(S){ 

S++; 

} 

(d) Write a short note on Peterson’s solution. 
Ans:  Peterson’s solution is a software based solution to the critical section 

problem. 

Consider two processes P0 and P1. For convenience, when presenting Pi, we 
use Pi to denote the other process; that is, j == 1 - i. 

The processes share two variables:  

boolean flag [2] ; 

int turn; 

Initially flag [0] = flag [1] = false, and the value of turn is immaterial (but is either 
0 or 1). The structure of process Pi is shown below.   

do{ 

 flag[i]=true 

 turn=j 

 while(flag[j] && turn==j); 

  critical section 

 flag[i]=false 



  Remainder section 

}while(1); 

To enter the critical section, process Pi first sets flag [il to be true and then 
sets turn to the value j, thereby asserting that if the other process wishes to enter 
the critical section it can do so. If both processes try to enter at the same time, turn 
will be set to both i and j at roughly the same time. Only one of these assignments 
will last; the other will occur, but will be overwritten immediately. The eventual 
value of turn decides which of the two processes is allowed to enter its critical 
section first.  

We now prove that this solution is correct. We need to show that:  

1. Mutual exclusion is preserved,  

2. The progress requirement is satisfied,  

3. The bounded-waiting requirement is met.  

To prove property 1, we note that each Pi enters its critical section only if 
either flag [jl == false or turn == i. Also note that, if both processes can be 
executing in their critical sections at the same time, then flag [i] ==flag [jl == true. 
These two observations imply that P0 and P1 could not have successfully executed 
their while statements at about the same time, since the value of turn can be either 
0 or 1, but cannot be both. Hence, one of the processes say Pj-must have 
successfully executed the while statement, whereas Pi had to execute at least one 
additional statement ("turn == j"). However, since, at that time, flag [j] == true, and 
turn == j, and this condition will persist as long as Pi is in its critical section, the 
result follows: 

To prove properties 2 and 3, we note that a process Pi can be prevented from 
entering the critical section only if it is stuck in the while loop with the condition 
flag [j] == true and turn == j; this loop is the only one. If Pi is not ready to enter the 
critical section, then flag [ j ] == false and Pi can enter its critical section. If Pi has 
set flag[j] to true and is also executing in its while statement, then either turn == i 
or turn == j. If turn == i, then Pi will enter the critical section. If turn == j, then Pi 
will enter the critical section. However, once Pi exits its critical section, it will 



reset flag [ jl to false, allowing Pi to enter its critical section. If Pi resets flag [ j 1 to 
true, it must also set turn to i.  

Thus, since Pi does not change the value of the variable turn while executing 
the while statement, Pi will enter the critical section (progress) after at most one 
entry by Pi (bounded waiting). 

----THANK YOU----- 


	Operating Systems short Q & A
	Operating Systems short Q & A

