
 
BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, 

ODISHA 

 
Lecture Notes  

On 
 
 
 
 
 

Prepared by, 

Dr. Subhendu Kumar Rath,  

BPUT, Odisha. 

THEORY OF COMPUTATION 
MODULE -1 

UNIT -1 
 



 
 Finite Automata and 

Languages UNIT 1   FINITE AUTOMATA AND 
LANGUAGES 

Structure          Page Nos.                                                        

 

1.0  Introduction 7 
1.1 Objectives 7 
1.2 Regular Expressions  7 

1.2.1 Introduction to Defining of Languages  
1.2.2 Kleene closure definition 
1.2.3 Formal Definition of Regular Expressions  
1.2.4 Algebra of Regular Expressions  

1.3 Regular Languages  13 
1.4 Finite Automata 14 

1.4.1 Finite Automata 
1.4.2 Another method to describe FA  
1.4.3 Finite Automata as Output Devices 

1.5 Summary  23 
1.6 Solutions/Answers  23 
 

1.0    INTRODUCTION 

We shall study different types of theoretical machines that are mathematical models 
for actual physical processes.  By considering the possible inputs on which these 
machines can work, we can analyze their various strengths and weaknesses.  We then 
arrive at what we may believe to be the most powerful machine possible.  When we 
do so, we would be surprised to find the computational tasks that this machine cannot 
perform.  This will be our ultimate result that no matter what machine we build, there 
will always be questions that are simple to state but even the most powerful machine 
possibly cannot answer.  Along the way, we hope  you would understand the concept 
of computability, which is the foundation of further research in this field.    
 

1.1 OBJECTIVES 

After studying this unit, you should be able to:   

 define alphabet, substring; 
 define a language and various operations on languages; 
 define and use a regular expression; 
 define a finite automata for computation of a language; and 
 obtain a finite automata for a known language;  

 

1.2    REGULAR EXPRESSIONS 

In this unit, first we shall discuss the definitions of alphabet, string, and language with 
some important properties. 
 
1.2.1 Introduction to Defining of Languages 

For a language, defining rules can be of two types.  The rules can either tell us how to 
test a string of alphabet letters that we might be presented with, to see if it is a valid 
word, i.e., a word in the language or the rules can tell us how to construct all the 
words in the language by some clear procedures.   
 

      7 



 
 Finite Automata and 

Formal Languages 
Alphabet: A finite set of symbols/characters.  We generally denote an alphabet by .  
If we start an alphabet having only one letter, say, the letter z, then  = {z} 
 
Letter : Each symbol of an alphabet may also be called a letter of the alphabet or 
simply a letter.  
 
Language over an alphabet :  A set of words over an alphabet.  Languages are 
denoted by letter L with or without a subscript.   
 
String/word over an alphabet: Every member of any language is said to be a string 
or a world. 
 
Example 1:  Let L1 be the language of all possible strings obtained by  
L1 = {z, zz, zzz, zzzz . . . . . .} 
 
This can also be written as 
L1 = {zn} for n = 1, 2, 3, ….. 
 
A string of length zero is said to be null string and is represented by .  
Above given language L1 does not include the null string.  We could have defined it 
so as to include . Thus, L = {zn n=0, 1, 2, 3…} contains the null string. 
 
In this language, as in any other, we can define the operation of concatenation, in 
which two strings are written down side by side to form a new longer string.  Suppose 
u = ab and v = baa, then uv is called concatenation of two strings u and v and is uv = 
abbaa and vu = baaab.  The words in this language clearly analogous to the positive 
integers, and the operation of concatenation are analogous to addition:  
 
zn concatenated with zm is the word zn+m.   
 
Example 2: If the word zzz is called c and the word zz is called d, then the word 
formed by concatenating c and d is  
 cd = zzzzz 
When two words in our language L1 are concatenated they produce another word in 
the language L1.  However, this may not be true in all languages.  
 
Example 3:  If the language is L2 = {z, zzz, zzzzz, zzzzzzz…..} 
 
           = {zodd} 
 
           = {z2n+1 for n = 0, 1, 2, 3….} 
 
then c = zzz and d = zzzzz are both words in L2, but their concatenation cd = zzzzzzzz 
is not a word in L2. The reason is simple that member of L2 are of odd length while 
after concatenation it is of even length. 
 
Note: The alphabet for L2 is the same as the alphabet for L1.  
 
Example 4:  A Language L3 may denote the language having strings of even lengths 
include of length 0.  In other words, L3 = { , zz, zzzz, …..} 
 
Another interesting language over the alphabet  = {z} may be  
 
Example 5:  L4 = {zp : p is a prime natural number}. 
There are infinitely many possible languages even for a single letter alphabet 

 = {z},  
 

  8 



 
 Finite Automata and 

Languages 
In the above description of concatenation we find very commonly, that for a single 
letter alphabet when we concatenate c with d, we get the same word as when we 
concatenate d with c, that is cd = dc  But this relationship does not hold for all 
languages.  For example, in the English language when we concatenate “Ram” and 
“goes” we get “Ram goes”. This is, indeed, a word but distinct from “goes Ram”.  
 
Now, let us define the reverse of a language L.   If c is a word in L, then reverse (c) is 
the same string of letters spelled backward.   
The reverse (L) = {reverse (w), w L} 
 
Example 6: Reverse (zzz) = zzz 
Reverse (173) = 371 
 
Let us define a new language called PALINDROME over the alphabet  = {a,b}. 
 
PALINDROME = { , and all strings w such that reverse (w) = w} 
 
                = { , a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, …} 
 
Concatenating two words in PALINDROME may or may not give a word in 
palindrome, e.g., if u = abba and v = abbcba, then uv = abbaabbcbba which is not 
palindrome.   
 
1.2.2  Kleene Closure Definition  

Suppose an alphabet , and define a language in which any string of letters from  is a 
word, even the null string.  We shall call this language the closure of the alphabet.  
We denote it by writing * after the name of the alphabet as a superscript, which is 
written as *. This notation is sometimes also known as Kleene Star.  
 
For a given alphabet , the language L consists of all possible strings, including the 
null string. 
 
For example, If  = {z}, then, * = L1 = { , z, zz, zzz …..} 
 
Example 7: If  = {0, 1}, then, * = { , 0, 1, 00, 01, 10, 11, 000, 001 …..} 
So, we can say that Kleene Star is an operation that makes an infinite language of 
strings of letters out of an alphabet, if the alphabet,    However, by the definition 
alphabet  may also be .  In that case, 

.
* is finite.  By “infinite language, we mean a 

language with infinitely many words.  
 
Now, we can generalise the use of the star operator to languages, i.e., to a set of 
words, not just sets of alphabet letters.  
 
Definition: If s is a set of words, then by s* we mean the set of all finite strings 
formed by concatenating words from s, where any word may be used as often.  
 
Example 8: If s = {cc, d}, then 
s* = {  or any word composed of factors of cc and d}  
    = {  or all strings of c’s and d’s in which c’s occur in even clumps}. 
 The string ccdcccd is not in s* since it has a clump of c’s of length 3.  
{x : x =  or x =  where i})d()cc......(d)cc(d)cc( mm2211 jijiji

1, j1,….. im, jm  0
 
Positive Closure: If we want to modify the concept of closure to refer to only the 
concatenation leading to non-null strings from a set s, we use the notation + instead of 
*.  This plus operation is called positive closure.  

      9 



 
 Finite Automata and 

Formal Languages 
 
Theorem 1:  For any set s of strings prove that s* = (s*)* = s** 
 
Proof: We know that every word in s** is made up of factors from s*.  
Also, every factor from s* is made up of factors from s.  
Therefore, we can say that every word in s** is made up of factors from s.  
 
First, we show s** s*.  (i) 
Let x  s**…. Then x = x1…..xn for some x1  s* which implies s** s* 
 
Next, we show s* s**. 
 s* s**   (ii) 
 
By above inclusions (i) and (ii), we prove that  
 s* = s** 
 
Now, try some exercises. 
 
Ex.1)  If u = ababb and v = baa then find 

(i) uv (ii) vu (iii) uv (iv) vu (v) uuv. 
 
Ex.2)  Write the Kleene closure of the following 

(i) {aa, b} 
(ii) {a, ba} 

 

 
1.2.3  Formal Definition of Regular Expressions 

Certain sets of strings or languages can be represented in algebraic fashion, then these 
algebraic expressions of languages are called regular expressions.  Regular 
expressions are in Bold face.  The symbols that appear in regular use of the letters of 
the alphabet  are the symbol for the null string , parenthesis, the star operator, and 
the plus sign.  
 
The set of regular expressions is defined by the following rules:  

1.  Every letter of  can be made into a regular expression  itself is a regular 
expression.  

 
2. If l and m are regular expressions, then so are  

(i)  (l) 
(ii)   lm 
(iii)  l+m 
(iv)  l* 
(v)   l+ = ll* 

 
3. Nothing else is regular expression.  
 
For example, now we would build expression from the symbols 0,1 using the 
operations of union, concatenation, and Kleene closure.  
(i) 01 means a zero followed by a one (concatenation)  
(ii) 0+1 means either a zero or a one (union)  
(iii) 0* means +0+00+000+….. (Kleen closure) . 

 
With parentheses, we can build larger expressions.  And, we can associate meanings 
with our expressions.  Here’s how 
 
 Expression  Set represented 
 (0+1)*   all strings over {0,1}    10 



 
 Finite Automata and 

Languages 
 0*10*10*  strings containing exactly two ones 
 (0+1)*11  strings which end with two ones.  
 
The language denoted/represented by the regular expression R is L(R). 
Example 9:  The language L defined by the regular expression ab*a is the set of all 
strings of a’s and b’s that begin and end with a’s, and that have nothing but b’s inside.  
 L = {aa, aba, abba, abbba, abbbba, } 
 
Example 10:  The language associated with the regular expression a*b*  contains all 
the strings of a’s and b’s in which all the a’s (if any) come before all the b’s (if any).  
 L = { , a, b, aa, ab, bb, aaa, aab, abb, bbb, aaa,…) 
 
Note that ba and aba are not in this language.  Notice also that there need not be the 
same number of a’s and b’s.  
 
Example 11: Let us consider the language L defined by the regular expression 
(a+b)* a(a+b)*. The strings of the language L are obtained by concatenating a string 
from the language corresponding to (a+b)* followed by a followed by a string from 
the language associated with (a+b)*. We can also say that the language is a set of all 
words over the alphabet  = {a,b} that have an a in them somewhere. 
 
To make the association/correspondence/relation between the regular expressions and 
their associated languages more explicit, we need to define the operation of 
multiplication of set of words.  
 
Definition: If S and T are sets of strings of letters (they may be finite or infinite sets), 
we define the product set of strings of letters to be.  ST = {all combinations of a string 
from S concatenated with a string from T in that order}. 
 
Example 12: If S = {a, aa, aaa}, T = {bb, bbb} 
Then, ST = {abb, abbb, aabb, aabbb, aaabb, aaabbb}. 
 
Example 13: If S = {a bb bab}, T = {  bbbb} 
Then, ST =  {a bb bab abbbb bbbbbb babbbbb} 
 
Example 14: If L is any language, Then, L  = L = L. 
 
 

Ex.3)  Find a regular expression to describe each of the following languages:  

 (a)  {a,b,c} 
 (b)  {a,b,ab,ba,abb,baa,….} 
 (c)  { ,a,abb,abbbb,….} 
 
Ex.4) Find a regular expression over the alphabet {0,1,} to describe the set of all 
 binary numerals without leading zeroes (except 0 itself).  So the language is 
 the set 
 
 {0,1,10,11,100,101,110,111,…}. 
 

 
1.2.4  Algebra of Regular Expressions 

There are many general equalities for regular expressions.  We will list a few simple 
equalities together with some that are not so simple.  All the properties can be verified 
by using properties of languages and sets.  We will assure that R,S and T denote the 
arbitrary regular expressions.  
 
Properties of Regular Expressions 
 

      11



 
 Finite Automata and 

Formal Languages 
1. (R+S)+T = R+(S+T)  
 
2. R+R = R 
 
3. R+  = +R = R. 
 
4. R+S = S+R 
 
5. R  = R =  
 
6. R  = R = R 
 
7. (RS)T = R(ST) 
 
8. R(S+T) = RS+RT 
 
9. (S+T)R = SR+TR 
 
10. * = * =  
 
11. R*R* = R* = (R*)* 
 
12. RR* = R*R = R* = +RR* 
 
13. (R+S)* = (R*S*)* = (R*+S*)* = R*S* = (R*S)*R* = R*(SR*)* 
 
14. (RS)* = (R*S*)* = (R*+S*)* 
 
Theorem 2:  Prove that R+R = R 
 
Proof : We know the following equalities:  
 
 L(R+R) = L(R)UL(R) = L(R) 
 
 So R+R = R 
 
Theorem 3:  Prove the distributive property  
 
 R(S+T) = RS+RT 
 
Proof:  The following set of equalities will prove the property: 
 
 L(R(S+T)) = L(R)L(S+T) 

     = L(R)(L(S)UL(T)) 
     = (L(R)L(S))U(L(R)L(T)) 
     = L(RS+RT)  
 

Similarly, by using the equalities we can prove the rest.  The proofs of the rest of the 
equalities are left as exercises.  
 
Example 15: Show that R+RS*S = a*bS*, where R = b+aa*b and S is any regular 
expression.  
 
R+RS*S = R +RS*S (property 6) 
  

 = R( +S*S) (property 8)   
 
  = R( +SS*) (property 12)   12 



 
 Finite Automata and 

Languages 
 
  = RS*           (property 12) 
 
  = (b+aa*b)S* (definition of R) 
  = ( +aa*) bS* (properties 6 and 8) 
 
  = a*bS*.   (Property 12) 
 
Try an exercise now. 
 
 

Ex.5) Establish the following equality of regular expressions:  
 b*(abb*+aabb*+aaabb*)* = (b+ab+aab+aaab)* 
 

As we already know the concept of language and regular expressions, we have an  
important type of language derived from the regular expression, called regular  
language. 
 

1.3 REGULAR LANGUAGES 

Language represented by a regular expression is called a regular language.  In other 
words, we can say that a regular language is a language that can be represented by a 
regular expression. 
 
Definition: For a given alphabet , the following rules define the regular language 
associated with a regular expression.  
 
Rule 1: ,{ } and {a} are regular languages denoted respectively by regular 
expressions  and . 
 
Rule 2: For each a in , the set {a} is a regular language denoted by the regular 
expression a.  
 
Rule 3: If l is a regular expression associated with the language L and m is a regular 
expression associated with the language M, then:  

(i)  The language = {xy : x L and y M} is a regular expression associated with the 
regular expression lm 

 
(ii) The regular expression l+m is associated with the language formed by the union 

of the sets L and M.  
 
 language (l+m) = L M  
 
(iii) The language associated with the regular expression (l)* is L*, the Kleen Closure 

of the set L as a set of words:  
 
 language (l*) = L*.  
 
Now, we shall derive an important relation that, all finite languages are regular. 

Theorem 4: If L is a finite language, then L can be defined by a regular expression.  
In other words, all finite languages are regular.  
 
Proof: A language is finite if it contains only finitely many words.  
 

      13

To make one regular expression that defines the language L, turn all the words in L 
into bold face type and insert plus signs between them.  For example, the regular 



 
 Finite Automata and 

Formal Languages 
expression that defines the language L = {baa, abbba, bababa} is baa + abbba + 
bababa  
 
Example1 6: If L = {aa, ab, ba, bb}, then the corresponding regular expression is  
aa + ab +ba + bb.  
 
Another regular expression that defines this language is (a+b) (a+b). 
 
So, a particular regular language can be represented by more than one regular 
expressions.  Also, by definition, each regular language must have at least one regular 
expression corresponding to it.  
 
Try some exercises. 
 
 

Ex.6) Find a language to describe each of the following regular expressions:  

 (a) a+b (b) a+b*  (c) a*bc*+ac  

Ex.7) Find a regular expression for each of the following languages over the 
 alphabet {a,b}: 
 

 (a)  strings with even length. 
 (b)  strings containing the sub string aba. 

 

In our day to day life we oftenly use the word Automatic. Automation is the process 
where the output is produced directly from the input without direct involvement of 
mankind.  The input passes from various states in process for the processing of a 
language we use very important finite state machine called finite automata. 
 

1.4   FINITE AUTOMATA 

Finite automata are important in science, mathematics, and engineering.  Engineers 
like them because they are superb models for circuits (and, since the advent of VLSI 
systems sometimes finite automata represent circuits.) computer scientists adore them 
because they adapt very likely to algorithm design. For example, the lexical analysis 
portion of compiling and translation.  Mathematicians are introduced by them too due 
to the fact that there are several nifty mathematical characterizations of the sets they 
accept.  
 
Can a machine recognise a language?  The answer is yes for some machine and some 
an elementary class of machines called finite automata.  Regular languages can be 
represented by certain kinds of algebraic expressions by Finite automaton and by 
certain grammars.  For example, suppose we need to compute with numbers that are 
represented in scientific notation.  Can we write an algorithm to recognise strings of 
symbols represented in this way?  To do this, we need to discuss some basic 
computing machines called finite automaton.  
 
An automata will be a finite automata if it accepts all the words of any regular 
language where language means a set of strings.  In other words,  The class of regular 
language is exactly the same as the class of languages accepted by FA’s., a 
deterministic finite automata. 
 
1.4.1 Finite Automata 

A system where energy and information are transformed and used for performing 
some functions without direct involvement of man is called automaton.  Examples are 
automatic machine tools, automatic photo printing tools, etc.   
 

  14 



 
 Finite Automata and 

Languages 
A finite automata is similar to a finite state machine.  A finite automata consists of 
five parts:  

(1) a finite set of states; 
(2) a finite set of alphabets; 
(3) an initial state; 
(4) a subset of set of states (whose elements are called “yes” state or; accepting 

state;) and  
(5) a next-state function or a transition state function.  
 
A finite automata over a finite alphabet A can be thought of as a finite directed graph 
with the property that each node omits one labelled edge for each distinct element of 
A.  The nodes are called states.  There is one special state called the start (or initial) 
state, and there is a possible empty set of states called final states.  
 
For example, the labelled graph in fig.1 given below represents a DFA over the 
alphabet A = {a,b} with start state 1 and final state 4.   
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig.  1:  Finite Automata 
 

We always indicate the start state by writing the word start with an arrow painting to 
it.  Final states are indicated by double circle.  
 
The single arrow out of state 4 labelled with a,b is short hand for two arrows from 
state 4, going to the same place, one labelled a and one labelled b.  It is easy to check 
that this digraph represents a DFA over {a,b} because there is a start state, and each 
state emits exactly two arrows, one labelled with a and one labelled with b.  
 
So, we can say that a finite automaton is a collection of three tuples:  

1. A finite set of states, one of which is designated as the initial state, called the start 
state, and some (may be none) of which we designated as final states.  

 
2. An alphabet  of possible input letters from which are formed strings that are to 

be read one letter at a time.  
 
3. A finite set of transitions that tell for each state and for each letter of the input 

alphabet which state to go to next.  
 
For example the input alphabet has only two letters a and b.  Let us also assume that 
there are only three states, x, y and z.  Let the following be the rules of transition:  

1. from state x and input a go to state y;  
 

      15



 
 Finite Automata and 

Formal Languages 
2. from state x and input b go to state z; 
 
3. from state y and input b go to state x;  
 
4. from state y and input b go to state z;  and   
 
5. from state z and any input stay at state z.   
Let us also designate state x as the starting state and state z as the only final state.  
 
Let us examine what happens to various input strings when presented to this FA.  Let 
us start with the string aaa.  We begin, as always, in state x.  The first letter of the 
string is an a, and it tells us to go state y (by rule 1).  The next input (instruction) is 
also an a, and this tells us (by rule 3) to go back to state x.  The third input is another 
a, and (by Rule 1) again we go to the state y.  There are no more input letters in the 
input string, so our trip has ended.  We did not finish in the final state (state z), so we 
have an unsuccessful termination of our run.  
 
The string aaa is not in the language of all strings that leave this FA in state z.  The set 
of all strings that do leave as in a final state is called the language defined by the finite 
automaton.  The input string aaa is not in the language defined by this FA.  We may 
say that the string aaa is not accepted by this FA because it does not lead to a final 
state.  We may also say “aaa is rejected by this FA.”   The set of all strings accepted is 
the language associated with the FA.  So, we say that L is the language accepted by 
this FA.  FA is also called a language recogniser.   
 
Let us examine a different input string for this same FA.  Let the input be abba.  As 
always, we start in state x.  Rule 1 tells us that the first input letter, a, takes us to state 
y.  Once we are in state y we read the second input letter, which is ab.  Rules 4 now 
tells us to move to state z.  The third input letter is a b, and since we are in state z, 
Rule 5 tells us to stay there.  The fourth input letter is an a, and again Rule 5 says state 
z.  Therefore, after we have followed the instruction of each input letter we end up in 
state z.  State z is designated as a final state.  So, the input string abba has taken us 
successfully to the final state.  The string abba is therefore a word in the language 
associated with this FA.  The word abba is accepted by this FA.  
 
It is not difficult for us to predict which strings will be accepted by this FA.  If an 
input string is made up of only the letter a repeated some number of times, then the 
action of the FA will be jump back and forth between state x and state y.  No such 
word can ever be accepted.  
 
To get into state z, it is necessary for the string to have the letter b in it as soon as a b 
is encountered in the input string, the FA jumps immediately to state z no matter what 
state it was before.  Once in state z, it is impossible to leave.  When the input strings 
run out, the FA will still be in state z, leading to acceptance of the string.  
 
So, the FA above will accept all the strings that have the letter b in them and no other 
strings.  Therefore, the language associated with this FA is the one defined by the 
regular expression (a+b)* b(a+b)*. 
 
The list of transition rules can grow very long.  It is much simpler to summarise them 
in a table format.  Each row of the table is the name of one of the states in FA, and 
each column of this table is a letter of the input alphabet.  The entries inside the table 
are the new states that the FA moves into the transition states.  The transition table for 
the FA we have described is:  
 

Table 1 
Input  

 
 

State 
 a b 

  16 



 
 Finite Automata and 

Languages 
 Start x 
         y 
Final z 

y 
x 
z 

z 
z 
z 
 

 
The machine we have already defined by the transition list and the transition table can 
be depicted by the state graph in Figure 2. 
 
 
 
 
 
 
 
 

 
 
 

Fig.  2:  State Transition graph 
 
Note: A single state can be start as well as final state both.  There will be only one 
start state and none or more than one final states in Finite Automaton.  
 
1.4.2 Another Method to Describe FA 

There is a traditional method to describe finite automata which is extremely intuitive.  
It is a picture called a graph.  The states of the finite automaton appear as vertices of 
the graph while the transitions from state to state under inputs are the graph edges.  
The state graph for the same machine also appears in Figure3 given below.  
 
 
 
 
 
 
 

Fig. 3:  Finite automata 
 
The finite automata shown in Figure 3 can also be represented in Tabular form as 
below: 
 

Table 2 
Input  

  
 

State 
 

0 1 
 

Accept? 

Start 
Final 

1 
2 
3 

1 
2 
3 

2 
3 
3 

No 
Yes 
No 

 
 
Before continuing, let’s examine the computation of a finite automaton.  Our first 
example begins in state one and reads the input symbols in turn changing states as 
necessary.  Thus, a computation can be characterized by a sequence of states.  (Recall 
that Turing machine configurations needed the state plus the tape content.  Since a 
finite automaton never writes, we always know what is on the tape and need only look 
at a state as a configuration.)  Here is the sequence for the input 0001001.  
 
Input Read : 0 0 0 1 0 0 1 

      17
States :   1    1    1    1    2    2    2    3 



 
 Finite Automata and 

Formal Languages 
 
Example 17 (An elevator controller): Let’s imagine an elevator that serves two 
floors.  Inputs are calls to a floor either from inside the elevator or from the floor 
itself.  This makes three distinct inputs possible, namely:  
 
 0 - no calls 
 1 - call to floor one 
 2.- call to floor two 
The elevator itself can be going up, going down, or halted at a floor.  If it is on a floor, 
it could be waiting for a call or about to go to the other floor.  This provides us with 
the six states shown in figure 4 along with the state graph for the elevator controller.  

 
W1 Waiting on first floor 
U1  About to go up 
UP  Going up 
DN  Going down 
W2  Waiting-second floor 
D2  About to go down 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Elevator Control 
 
A transition state table for the elevator is given in table3:  
 

Table 3 Elevator Control 
State Input 

 None call to 1 call to 2 
W1 (wait on 1) 
U1 (start up) 
UP 
DN 
W2 (wait on 2) 
D2 (start down) 

W1 
UP 
W2 
W1 
W2 
DN 

W1 
U1 
D2 
W1 
DN 
DN 

UP 
UP 
W2 
U1 
W2 
D2 

 
Accepting and rejecting states are not included in the elevator design because 
acceptance is not an issue.  If we were to design a more sophisticated elevator, it 
might have states that indicated:  
 
Finite automata 
 

a) power faukyrem 
b) overloading, or 
c) breakdown 

   18 



 
 Finite Automata and 

Languages 
In this case, acceptance and rejection might make sense.  
 
Let us make a few small notes about the design.  If the elevator is about to move ( i.e., 
in state U1 or D2) and it is called to the floor it is presently on it will stay.  (This may 
be good  Try it next time you are in an elevator.) And, if it is moving (up or down) 
and gets called back the other way, it remembers the call by going to the U1 or D2 
state upon arrival on the next floor.  Of course, the elevator does not do things like 
open and close doors (these could be states too) since that would have added 
complexity to the design.  Speaking of complexity, imagine having 100 floors.  
That is our levity for this section.  Now that we know what a finite automaton is, we 
must (as usual) define it precisely.  
 
   Definition :  A finite automation M is a quintuple M = (Q, , ,qO,F) where : 
 
  Q is a finite set (of states) 
   is a finite alphabet (of input symbols) 
  : Q    Q (next state function) 
  qO Q (the starting state) 
  F Q (the accepting states)  
 
 
We also need some additional notation.  The next state function is called the transition 
function and the accepting states are often called final states.  The entire machine is 
usually defined by presenting a transition state table or a transition diagram.  In this 
way, the states, alphabet, transition function, and final states are constructively 
defined.  The starting state is usually the lowest numbered state.  Our first example of 
a finite automaton is:  
 
  M = ({q1, q2, q3}, {0,1}, , q1, {q2} 
 
Where the transition function , is defined explicitly by either a state table or a state 
graph.  
 
At this point, we must make a slight detour and examine a very important yet 
seemingly insignificant input string called the empty string.  It is a string without any 
symbols in it and is denoted as .  It is not a string of blanks.  An example might 
make this clear.  Look between the brackets in the picture below.   
 
 
 
 
 
 

Fig. 5:  Representation of a blank and on empty  string 
 
Let us look again at a computation by our first finite automaton.  For the input 010, 
our machine begins in q1, reads a 0 and goes to (q2,0) = q2 after reading the final 0.  
All that can be put together as:  
 
 ( ( (q1,0),1)0) = q2    
 
We call this transition on strings * and define it as follows: 
 
Definition :   Let M = (Q, , ,qO,F).   For any input string x, input symbol a, 
and state qi, the transition function on strings * takes the values:  
 

      19
  * (qi,(*e)) = wi 



 
 Finite Automata and 

Formal Languages 
 

* (qi,a) =  (qi,,a)  a   
 

* (qi,xa) = ( *(qi,x),a)  a , x *  
 
That certainly was terse.  But * is really just what one expects it to be.  It merely 
applies the transition function to the symbols in the string.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6:  Finite automata 
 
This machine has a set of states = {q0, q1, q2, q3) and operates over the input alphabet 
{a,b}.  It’s starting state is q0 which can also be shown by an arrow headed toward it 
with no start point (as shown in Fig.6) and its set of final or accepting states, F = {q2} 
an accepting state can also be shown by two concentric circles as shown in the fig..  
The transition function is fully described twice once in figure 6 as a state graph and 
once in tasble 4 as a state table.  
 

Table 4 
Input  

State 
 

A b 
 

Accept? 

0 
1 
2 
3 

3 
3 
2 
3 

1 
2 
2 
3 

No 
No 
Yes 
No 

 
 
If the machine receives the input bbaa, it goes through the sequence of states:  
 q0,q1,q2,q2,q2 
While when it gets an input such as abab, it goes through the state transition:  

q0,q3,q3,q3,q3 
Now we shall become a bit more abstract.  When a finite automaton receives an input 
string such as:  
 x = x1x2….xn 
where the xi are symbols from its input alphabet, it progresses through the sequence:  
 

1n21 kkk q,...q,q  
where the states in the sequence are defined as: 
  q  

1kq = 0

  )

)

x,q()x,q(q 101kk 12

  xx,q()x,q(q 210
*

2kk 23

)x....xx,q()x,q(q n210
*

nkk n1n
   20 



 
 Finite Automata and 

Languages 
 
Getting back to a more intuitive reality, the following table provides an assignment of 
values to the symbols used above for an input of bbaba to the finite automaton of 
figure 3.  
 i   1 2 3 4 5 6 
 xi b b a b a 
      q

1kq 0 q1 q2 q2 q2 q2 
 
Definition: The set (of strings) accepted by the finite automaton M = (Q, , ,q0,F) is 
T(M) = {x *(q0,x) F} 
 
This set of accepted strings (L(M) to mean for language accepted by M) is merely all 
of the strings for which M ended up in a final or accepting state after processing the 
string.  For our first example (figure 1) this was all strings of 0’s and 1’s that contain 
exactly one 1.  Our last example (figure 3) accepted the set of strings over the alphabet 
{a,b} which began with exactly two b’s.  
 
1.4.3 Finite Automata as Output Devices 

The automata that we have discussed so far have only a limited output capability to 
the extent that only outputs are ‘accepted’ and ‘not accepted’ to indicating the 
acceptance or rejection of an input string.  We want to introduce two classic models 
for finite automata that have additional output capability.  We will consider machines 
that transform input strings into output strings.  These machines are basically DFAs, 
except that we associate an output symbol with each state or with each state transition.        
But there are no final states because we are not interested in acceptance or rejection.  
 
Mealy and Moore Machines 

The first model invented by Mealy [1955] is called a Mealy machine.  It associates an 
output letter with each transition.  For example, if the output associated with the edge 
labelled with the letter a is x, we shall write a/x on that edge. A state transition for a 
Mealy machine can be presented in figure 7 as follows:  
 
 
 

 
Fig. 7:  Mealy machine 

 
Indicating that the machine in state i and on input a gives output x and enters state j. 
 
In a Mealy machine, an output always takes place during a transition of  the states.  
The second model invented by Moore [1956], is called a Moore machine.  It 
associates an output letter with each state.  For example, if the output associated with 
state I is x, we will always write i/x inside the state circle.  A typical state transition 
for a Moore machine can be presented in figure8 as follows:  
 
 
 
 
 

Fig. 8:  Moore  machine 
 

In a Moore machine, each time a state is entered, simultaneously an output takes 
place.  So, the first output always occurs as soon as the machine is started.  Mealy and 
Moore machines are equivalent.  In other words, any problem that is soluble by one 
type of machine can also be solved by the other type of machine.  
 

      21
Example 18: Suppose we want to compute the number of sub strings of the form 



 
 Finite Automata and 

Formal Languages 
bab 

that occurs in an arbitrary input string over the alphabet {a,b}.  For example, there are 
three such sub strings b, a, b in the string bab.  
 
The diagrammatic representation of a Mealy machine for the task is given below in 
figure 9:  
 
 
 
 
 
 
 

Fig. 9: Mealy machine 
For example, the output of this Mealy machine for the sample string 
Abababaababb is 000101000010, where each 1 indicates the availability of a (or an 
additional) substring up to that point.  On the other hand, a 0 indicates that the three 
previous inputs including the current input do not form a substring of the form bab. 
 
 
 
 
 
 
 
 

Fig. 10:  Moore  machine 
 
For example, the output of this Moore machine for the simple string.  
Abababaababb is 0000101000010.  We can count the number of 1’s in the output 
string to obtain the number  of occurrence of the sub string bab.  
 
Example 19:  A Simple Traffic Signal : Suppose we have a simple traffic 
intersection, where a north-south highway intersects an east-west highway.  We will 
assume that the east-west highway always has a green light unless some north-south 
traffic is detected by sensors.  When north-south traffic is detected, after a certain time 
delay the signals change and stay that way for a fixed period of time.  We are required 
to design an appropriate circuit to capture the desired result stated above.  We 
construct a Moore machine as a model of the required circuit as follows:  
 
The input symbols for the required Moore machine are 0 (no traffic detected) and 1 
(traffic detected).  Let G, Y and R mean the colours Green, Yellow and Red, 
respectively.  The output strings are GR, YR, RG, AND RY, where the first letter of a 
string is the colour of the east-west light and the second letter of a string is the colour 
of the north-sought light.  The Moore machine model for this simple traffic 
intersection problem is given below diagrammatically:  
 
 
 
 
 
 
 

Fig. 11:  Traffic signal transition diagram 
 
Mealy machines appear to be more useful than Moore machines.  But problems like 
traffic signal control have hic Moore machine solutions because each state is 
associated with a new output configuration.  
 

  22 Let us try some exercises:   



 
 Finite Automata and 

Languages 
 
 

Ex.8) Build a new FA that accepts only the word .  Also write the corresponding 
regular expression. 

 
Ex.9) Build an FA that accepts only those words that have even lengths.  Also write 

 the regular expression. 
 
Ex.10) Build an FA that accepts only the word baa, ab and abb and no other words.    

Also write the corresponding regular expression. 
 
Ex.11) Build an FA that will accept the language of all words each having twice as 

many a’s as the number of b’s.   Also write the corresponding regular 
expression. 

 
Ex.12) Describe the languages accepted by the following FA’s: 
 
 
 
 
 
 
 
 

                         (a)                        (b) 
 
 
 
 
 
 
 

 
                                                                                 (c) 
 

Fig. 12 
 

1.5 SUMMARY 

In this unit we introduced several formulations for regular languages,  regular 
expressions are algebraic representations of regular languages.  Finite Automata are 
machines that recognise regular languages.  From regular expressions, we can derive 
regular languages.  We also made some other observations.  Finite automata can be 
used as output devices - Mealy and Moore machines.   
  

1.6 SOLUTIONS/ANSWERS 

Ex.1)  (i)  ababbbaa 
(ii) baaababb 
(iii) ab abb ab abb 
(iv) baa baa 
(v) ababbababb baa 
 

Ex.2) (i)   Suppose aa = x  
Then { x, b}* = { , x, b, xx, bb, xb, bx, xxx, bxx, xbx, xxb, bbx, bxb, xbb, bbb} 
substituting x = aa 
{aa,b}* = { , aa, b, aaaa, bb, aab, baa, aaaaaa, baaaa, aabaa,  

      23



 
 Finite Automata and 

Formal Languages 
(ii)   {a,ba}*= { , a, ba, aa, baba, aba, baa, …  }        

 
Ex.3) (a)  a+b+c 
 (b)   ab*+ba* 
 (c)  +a(bb)* 
  
Ex.4)  0+1(0+1)* 
 
Ex.5) Starting with the left side and using properties of regular expressions, we get 
 b*(abb* + aabb*+aaabb*)* 
 = b*((ab+aab+aaab)b*)* (property 9) 
 = (b + ab + aab + aaab)* (property 7). 
 
Ex.6) (a) {a,b} 
 (b) {a, ,b,bb,….bn,….} 

(c) {a,b,ab,bc,abb,bcc,…abn,bcn,….} 
 

 
Ex.7) (a) (aa+ab+ba+bb)* 
 (b)  (a+b)*aba(a+b)* 
 
Ex.8)  
 
 
 
 
 
 
 

Fig. 13:  Regular Expression of a  null  string  
 
Ex.9)  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14:  Regular Expression is (aa+ba+ab+bb) 
 
Ex.10) R.E. is (baa + ab + abb) 
 
 
Ex.11) (i) All the words of odd lengths. 
 (ii) All the words ended with a. 
 (iii) All the words with a at even places.  
 

 
 
 
 
 
 

  24  



 

      25

 Finite Automata and 
Languages 

 
 
 
 
 
 
 
 
 
 


	1
	Lecture Notes on Theory of Computation Module 1 - Unit 1 by Dr. SK Rath
	UNIT 1  FINITE AUTOMATA AND LANGUAGES
	
	
	
	
	
	Structure  Page Nos.





	1.2   REGULAR EXPRESSIONS



