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3.0    INTRODUCTION 

In unit 2, we studied the class of regular languages and their representations through 
regular expressions and finite automata.  We have also seen that not all languages are 
regular. If a language is not regular than there should be other categories of language 
also.  We have also seen that languages are defined by regular expression. Regular 
languages are closed under union, product, Kleene star, intersection and complement.  
Application areas are: text editors, sequential circuits, etc.  The corresponding 
acceptor is Finite Automata.  
 
Now, we shall discuss the concept of context free grammar for a larger class of 
languages.  Language will be defined by context free grammar.  Corresponding 
acceptor is Pushdown Automata. In this unit we shall check whether a context free 
language is closed under union, product and Kleene star or not.  Language that will 
be defined by context free grammar is context free language.  Application areas are: 
programming languages, statements and compilers.   
 

3.1    OBJECTIVES 

After studying this unit, you should be able to   

• create a grammar from language and vice versa;  
• explain and create context free grammar and language; 
• define the pushdown automata;  
• apply the pumping lemma for non-context free languages;  and  
• find the equivalence of context free grammar and Pushdown Automata 
 
In unit 1, we discussed language and a regular language.  A language in meaning if a  
grammar is used to derive the language.  So, it is very important to construct a  
language from a grammar.  As you know all languages are not regular.  This non- 
regular languages are further categorised on the basis of classification of grammar. 
 
 

3.2    GRAMMAR AND ITS CLASSIFICATION 

In our day-to-day life, we often use the common words such as grammar and 
language. Let us discuss it through one example. 

Example 1: If we talk about a sentence in English language, “Ram reads”, this 
sentence is made up of Ram and reads.  Ram and reads are replaced for <noun> and 
<verb>.  We can say simply that a sentence is changed by noun and verb and is 
written as 
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 <sentence>  → <noun> <verb> 
 
where noun can be replaced with many such values as Ram, Sam, Gita…. and also 
<verb> can be replaced with many other values such as read, write, go ….  As noun 
and verb are replaced, we easily write  
 

<noun>   → I 
<noun>             → Ram 
<noun>             → Sam 
<verb>     →   reads 
<verb>          → writes  

 
From the above, we can collect all the values in two categories.  One is with the 
parameter changing its values further, and another is with termination.  These 
collections are called variables and terminals, respectively.  In the above discussion 
variables are, <sentence>, <noun> and <verb>, and terminals are I, Ram, Sam, read, 
write.  As the sentence formation is started with <sentence>, this symbol is special 
symbol and is called start symbol.  
 
Now formally, a Grammar  G = (V, Σ, P, S) where,  
 
• V is called the set of variables.  e.g.,  {S, A, B, C} 
• Σ is the set of terminals, e.g. {a, b} 
• P is a set of production rules 

(-  Rules of the form A → α where A∈ (VU∑)+ and  α∈ (VU∑)+ e.g., S → 
aA).    

• S is a special variable called the start symbol S∈V.  
 
Structure of grammar:  If L is a language over an alphabet A, then a grammar for L 
consists of a set of grammar rules of the form 
 

x → y 
 
where x and y denote strings of symbols taken from A and from a set of grammar 
symbols disjoint from A.  The grammar rule x → y is called a production rule, and 
application of production rule (x is replaced by y), is called derivation. 
 
Every grammar has a special grammar symbol called the start symbol and there must 
be at least one production with the left side consisting of only the start symbol.  For 
example, if S is the start symbol for a grammar, then there must be at least one 
production of the form S→ y. 
 
Example 2:  Suppose A = {a, b, c}  then a grammar for the language A* can be 
described by the following four productions:  
 
 S → ∧   (i) 
 S → aS   (ii) 
 S → bS   (iii) 
 S → cS   (iv) 
 

S    ⇒ aS    ⇒ aaS   ⇒   aacS   ⇒ aacbS   ⇒ aacb  =  aacb 
                using       using       using        using         using  
                prod.(u)   prod.(ii)  prod.(iv)   prod.(iii)   prod.(i) 
 
The desired derivation of the string is aacb.  Each step in a derivation corresponds to 
a branch of a tree and this true is called parse tree, whose root is the start symbol. 
The completed derivation and parse tree are shown in the Figure 1,2,3:  
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                        Fig. 1: S ⇒ aS                           Fig. 2: S ⇒ aS  ⇒  aaS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: S ⇒ aS ⇒ aaS ⇒ aacS 
 

                      
 Let us derive the string aacb, its parse tree is shown in figure 4. 

  S ⇒ aS ⇒ aaS ⇒ aacS  ⇒  aacbS ⇒ aacb∧ = aacb   
   

 
 
 
 
 
 
 
 
 
 
 

  
 

Fig. 4: Parse tree deriving aacb 
 
Sentential Form: A string made up of terminals and/or non-terminals is called a 
sentential form. 
 
In example 1,  formally grammar is rewritten as 
In G = (V, Σ, P, S) where  
V = {<sentence>, <noun>, <verb>} 
Σ = {Ram, reads,…} 
P = <sentence> → <noun> <verb> 
<noun> → Ram 
<verb> → reads, and 
S = <sentence> 
If x and y are sentential forms and  α → β is a production, then the replacement of α 
by β in xαy is called a derivation, and we denote it by writing  
 

xαy ⇒ xβy 
 

To the left hand side of the above production rule x is left context and y is right 
context.  If the derivation is applied to left most variable of  the right hand side of any 
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production rule, then it is called leftmost derivation.  And if applied to rightmost then 
is called rightmost derivation. 
 
The language of a Grammar :  

A language is generated from a grammar.  If G is a grammar with start symbol S and 
set of terminals ∑, then the language of G is the set  
 

L(G) = {W⏐W∈Σ* and S   W}. 
*

G
⇒

Any derivation involves the application production Rules.  If the production rule is 

applied once, then we write α B.  When it is more than one, it is written as α β 
G
⇒

*

a
⇒

Recursive productions:  A production is called recursive if its left side occurs on its 
right side.  For example, the production S → aS is recursive.  A production A → α is 
indirectly recursive.  If A derives a sentential form that contains A,  Then, suppose 
we have the following grammar:  
 

S → b/aA 
A → c/bS 

 
the productions S → aA and A → bs are both indirectly recursive because of the 
following derivations:  
 

S ⇒ aA ⇒ abS, 
A ⇒ bS ⇒ baA 

 
A grammar is recursive if it contains either a recursive production or an indirectly 
recursive production.   
 
A grammar for an infinite language must be recursive.  
 
Example 3:  Consider {∧, a, aa, …, an, …} = {an⏐n≥0}.  
 
Notice that any string in this language is either ∧ or of the form ax for some string x 
in the language.  The following grammar will derive any of these strings: 
 

S →  ∧/aS. 
 
Now,  we shall derive the string aaa: 
 

S ⇒ aS ⇒ aaS  ⇒ aaaS ⇒ aaa.  
 
Example 4: Consider  {∧, ab, aabb, …, an bn, …} = {anbn⏐n≥0}.  
 
Notice that any string in this language is either ∧ or of the form axb for some string x 
in the language.  The following grammar will derive any of the  strings:  

S →  ∧/aSb. 
  
For example, we will derive the string aaabbb;  

 
S ⇒ aSb ⇒ aaSbb  ⇒ aaaSbbb ⇒ aaabbb. 

 
Example 5:  Consider a language {∧, ab, abab, …, (ab)n, …} = {(ab)n⏐n≥0}. 
 
Notice that any string in this language is either ∧ or of the form abx for some string x 
in the language.  The following grammar will derive any of these strings:  

S →  ∧/abS. 
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For example, we shall derive the string ababab:  
 

S ⇒ abS ⇒ ababS  ⇒ abababS ⇒ ababab. 
 
Sometimes, a language can be written in terms of simpler languages, and a grammar 
can be constructed for the language in terms of the grammars for the simpler 
languages.  We will now concentrate on operations of union, product and closure.  
 
Suppose M and N are languages whose grammars have disjoint sets of non-terminals.  
Suppose also that the start symbols for the grammars of M and N are A and B, 
respectively.  Then, we use the following rules to find the new grammars generated 
from M and N:   
 
Union Rule: The language M∪N starts with the two productions 
 

S → A/B.  
 
Product Rule: The language MN starts with the production.  
 

S → AB 
 
Closure Rule: The language M* starts with the production  
 

S → AS/∧.  
 
Example 6:  Using the Union Rule:  
 
Let’s write a grammar for the following language:  
 

L =  {∧, a, b, aa, bb, …, an, bn, …}.  
 

L can be written as union. 
 

L = M∪N, 
 
 Where M = {an⏐n≥0} and N = {bn⏐ n≥0}.  

 
Thus, we can write the following grammar for L:  

 
                     S → A⏐B union rule, 

A → ∧/aA grammar for M, 
B → ∧/bB grammar for N.  

 
Example 7: Using the Product Rule:  
 
We shall write a grammar for the following language :  
 

L = {ambn⏐m,n≥0}. 
 

L can be written as a product L = MN, where M = {am⏐m≥0} and N = {bn⏐n≥0}.  
Thus we can write the following grammar for L:  
 

S → AB product rule 
A → ∧/aA grammar for M, 
B → ∧/bB grammar for N, 

 
Example 8:  Using the Closure Rule: For the language L of all strings with zero or 
more occurrence of aa or bb.  L = {aa, bb}*.  If we let M = {aa, bb}, then L = M*.  
Thus, we can write the following grammar for L:  
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S → AS/∧ closure rule, 

A → aa/bb grammar for M. 
 
We can simplify the grammar by substituting for A to obtain the following grammar:  
 

S → aaS/bbS/∧  
 
Example 9: Let Σ = {a, b, c}.  Let S be the start symbol.  Then, the language of 
palindromes over the alphabet Σ has the grammar.  
 

S → aSa/bSb/cSc/a/b/c/∧. 
 
For example, the palindrome abcba can be derived as follows:  
 

S ⇒ aSa ⇒ abSba ⇒ abcba 
 
Ambiguity:  A grammar is said to be ambiguous if its language contains some string 
that has two different parse tree.  This is equivalent to saying that some string has two 
distinct leftmost derivations or that some string has two distinct rightmost 
derivations.  
 
Example 10: Suppose we define a set of arithmetic expressions by the grammar:  
 

E → a/b/E−E 
 
 
 
 
 
 
 
 
 
 
 
 
                       Fig. 5: Parse Tree          Fig. 6: Parse Tree showing ambiguity 
 
This is the parse tree for an ambiguous string.  
 
The language of the grammar E → a/b/E-E contains strings like a, b, b−a, a−b−a, and 
b−b−a−b.  This grammar is ambiguous because it has a string, namely, a−b−a, that 
has two distinct parse trees.  
 
Since having two distinct parse trees mean the same as having two distinct left most 
derivations.   
 

E ⇒ E−E ⇒  a−E ⇒ a−E−E ⇒ a − b − E ⇒ a − b − a. 
 

    E ⇒ E−E ⇒  E−E−E ⇒ a−E−E ⇒ a − b − E ⇒ a − b − a. 
 
The same is the case with rightmost derivation.  
 
• A derivation is called a leftmost derivation if at each step the leftmost non-

terminal of the sentential form is reduced by some production.   
 
• A derivation is called a rightmost derivation if at each step the rightmost  non-

terminal of the sentential form is reduced by some production.  
 
Let us try some exercises.  
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Ex.1) Given the following grammar 
 

S → S[S]/∧ 
  
For each of the following strings, construct a leftmost derivation, a rightmost 
derivation and a parse tree.  

 
 (a) [ ] (b) [[ ]] (c) [ ] [ ] (d) [[] [[]]] 
 
Ex.2) Find a grammar for each language  
 
 (a) {ambn⏐m,n∈N, n>m}. 
 (b) {ambcn⏐n∈N}. 
 
Ex.3) Find a grammar for each language: 
  
 (a) The even palindromes over {a, b}. 
 (b) The odd palindromes over {a, b}. 
 

Chomsky Classification for Grammar:  

As you have seen earlier, there may be many kinds of production rules.  So, on the 
basis of production rules we can classify a grammar.  According to Chomsky 
classification, grammar is classified into the following types:  
 
Type 0:  This grammar is also called unrestricted grammar.  As its name suggests, 
it is the grammar whose production rules are unrestricted.   
 
All grammars are of type 0.  
 
Type 1: This grammar is also called context sensitive grammar.   A production of 
the form xAy → xαy is called a type 1 production if α≠∧, which means length of the 
working string does not decrease.  
 
In other words, ⏐xAy⏐≤⏐xαy⏐as α≠∧.  Here, x is left context and y is right context.  
 
A grammar is called type 1 grammar, if all of its productions are of type 1.   For this, 
grammar S → ∧ is also allowed.   
 
The language generated by a type 1 grammar is called a type 1 or context sensitive 
language.   
 
Type 2:  The grammar is also known as context free grammar.  A grammar is 
called type 2 grammar if all the production rules are of type 2.  A production is said 
to be of type 2 if it is of the form  A → α where A∈V and α∈(V∪Σ)*.  In other 
words, the left hand side of production rule has no left and right context.  The 
language generated by a type 2 grammar is called context free language.  
 
Type 3: A grammar is called type 3 grammar if all of its production rules are of type 
3.  (A production rule is of type 3 if it is of form A → ∧, A → a or A → aB where 
a∈Σ and A,B∈V), i.e., if a variable derives a terminal or a terminal with one variable.  
This type 3 grammar is also called regular grammar.  The language generated by 
this grammar is called regular language.  
 
Ex.4) Find the highest type number that can be applied to the following grammar:  

  (a) S → ASB/b,  A → aA     
  (b) S → aSa/bSb/a/b/∧ 
  (c) S → Aa, A→ S/Ba,  B → abc.  
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3.3    CONTEXT FREE GRAMMAR 

We know that there are non-regular languages.  For example:  {anbn⏐n≥0} is non-
regular language.  Therefore, we can’t describe the language by any of the four 
representations of regular languages, regular expressions, DFAs, NFAs, and regular 
grammars.  

 
Language {anbn⏐n≥0} can be easily described by the non-regular grammar:  
 

S → ∧/aSb. 
 
So, a context-free grammar is a grammar whose productions are of the form :  
 

S → x 
 
Where S is a non-terminal and x is any string over the alphabet of terminals and non-
terminals.  Any regular grammar is context-free.  A language is context-free language 
if it is generated by a context-free grammar.   
 
A grammar that is not context-free must contain a production whose left side is a 
string of two or more symbols.  For example, the production Sc → x is not part of 
any context-free grammar.  
 
Most programming languages are context-free.  For example, a grammar for some 
typical statements in an imperative language might look like the following, where the 
words in bold face are considered to be the single terminals:  
 

S → while E do S/ if E then S else S/{SL}/I: = E 
 

L →  SL/∧ 
 

E →….(description of an expression) 
I →….(description of an identifier). 

 
We can combine context-free languages by union, language product, and closure to 
form new context-free languages.  
 
Definition: A context-free grammar, called a CFG, consists of three components: 

1. An alphabet Σ of letters called terminals from which we are going to make 
strings that will be the words of a language.  

 
2. A set of symbols called non-terminals, one of which is the symbols, start 
 symbol.  
 
3. A finite set of productions of the form  
 
 One non-terminal → finite string of terminals and/or non-terminals.  
 
Where the strings of terminals and non-terminals can consist of only terminals or of 
only non-terminals, or any combination of terminals and non-terminals or even the 
empty string.  
 
The language generated by a CFG is the set of all strings of terminals that can be 
produced from the start symbol S using the productions as substitutions.  A language 
generated by a CFG is called a context-free language.  
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Example 11: Find a grammar for the language of decimal numerals by observing that 
a decimal numeral is either a digit or a digit followed by a decimal numeral.  
 

S → D/DS 
D  →  0/1/2/3/4/5/6/7/8/9 

 
S ⇒ DS ⇒ 7S ⇒ 7DS ⇒ 7DDS ⇒ 78DS ⇒ 780S ⇒ 780D ⇒ 780. 

 
Example 12: Let the set of alphabet A = {a, b, c} 
 
Then, the language of palindromes over the alphabet A has the grammar:  
 
 S →  aSa⏐bSb⏐cSc⏐a⏐b⏐c⏐∧ 
 
For example, the palindrome abcba can be derived as follows:  
 
 P ⇒ aPa ⇒ abPba ⇒ abcba 
 
Example 13:  Let the CFG is S → L⏐LA 
 
  A → LA⏐DA⏐∧ 
  L → a⏐b⏐…⏐Z  
  D → 0⏐1⏐…⏐9 
The language generated by the grammar has all the strings formed by a, b,c ….z, 0, 
1,…..9. 
 
We shall give a derivation of string a2b to show that it is an identifier.  
 

S ⇒ LA ⇒ aA ⇒ aDA ⇒ a2A  ⇒ a2LA  ⇒ a2bA ⇒  a2b 
 
Context-Free Language: Since the set of regular language is closed under all the 
operations of union, concatenation, Kleen star, intersection and complement.  The set 
of context free languages is closed under union, concatenation, Kleen star only.  
 
Union  
 
Theorem 1:  if L1 and L2 are context-free languages, then L1UL2 is a context-free 
language.  
 
Proof:  If L1 and L2 are context-free languages, then each of them has a context-free 
grammar;  call the grammars G1 and G2.  Our proof requires that the grammars have 
no non-terminals in common. So we shall subscript all of G1’s non-terminals with a 1 
and subscript all of G2’s non-terminals with a 2.  Now. we combine the two 
grammars into one grammar that will generate the union of the two languages.  To do 
this, we add one new non-terminal, S, and two new productions.  
 
S → S1

     ⏐ S2
 
S is the starting non-terminal for the new union grammar and can be replaced either 
by the starting non-terminal for G1 or for G2, thereby generating either a string from 
L1 or from L2.  Since the non-terminals of the two original languages are completely 
different, and once we begin using one of the original grammars, we must complete 
the derivation using only the rules from that original grammar.  Note that there is no 
need for the alphabets of the two languages to be the same.  
 
Concatenation  

Theorem 2: If L1 and L2 are context-free languages, then L1L2 is a context-free 
language.   
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Proof : This proof is similar to the last one.  We first subscript all of the non-
terminals of G1 with a 1 and all the non-terminals of G2 with a 2.  Then, we add a new 
nonterminal, S, and one new rule to the combined grammar:  
 
S → S1S2
 
S is the starting non-terminal for the concatenation grammar and is replaced by the 
concatenation of the two original starting non-terminals.  
 
Kleene Star 

Theorem 3: If L is a context-free language, then L* is a context-free language.  
 
Proof :  Subscript the non-terminals of the grammar for L with a 1.  Then add a new 
starting nonterminal, S, and the rules   
 
S → S1S 
     ⏐ Λ 
 
The rule S → S1S is used once for each string of L that we want in the string of L*, 
then the rule S → Λ is used to kill off the S.  
 
Intersection  

Now, we will show that the set of context-free languages is not closed under 
intersection.  Think about the two languages L1 = {anbncm⏐n,m≥0} and L2 = 
{ambncn⏐n,m≥0}.  These are both context-free languages and we can give a grammar 
for each one:  
 
G1: 
 
S → AB 
A → aAb 
    ⏐ Λ 
B → cB 
    ⏐ Λ 
  
G2: 
S → AB 
A → aA 
    ⏐ Λ 
B → bBc 
    ⏐ Λ 
 
The strings in L1 contain the same number of a’s as b’s, while the strings in L2 
contain the same number of b’s as c’s.  Strings that have to be both in L1 and in L2, 
i.e., strings in the intersection, must have the same numbers of a’s as b’s and the same 
number of b’s as c’s.   
 
Thus, L1∩L2 = {anbncn⏐n≥0}.  Using Pumping lemma for context-free languages it 
can be proved easily that { nnn cba   n ≥ 0} is not context-free language. So, the class 

of context-free languages is not closed under intersection.  
 
Although the set is not closed under intersection, there are cases in which the 
intersection of two context-free languages is context-free.  Think about regular 
languages, for instance.  All regular languages are context-free, and the intersection 
of two regular languages is regular.  We have some other special cases in which an 
intersection of two context-free languages is context, free.  
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Suppose that L1 and L2 are context-free languages and that L1⊆L2.  Then L2∩L1 = L1 
which is a context-free language.  An example is EQUAL ∩{anbn}.  Since strings in 
{anbn} always have the same number of a’s as b’s, the intersection of these two 
languages is the set {anbn}, which is context-free.  
 
Another special case is the intersection of a regular language with a non-regular 
context-free language.  In this case, the intersection will always be context-free.   An 
example is the intersection of L1 = a+b+a+, which is regular, with L2 = 
PALINDROME.  L1∩L2 = {anbman⏐m,n ≥ 0}.  This language is context-free.  
 
Complement  

The set of context-free languages is not closed under complement, although there are 
again cases in which the complement of a context-free language is context-free.  
 
Theorem 4: The set of context-free languages is not closed under complement.  
 
Proof: Suppose the set is closed under complement.  Then, if L1 and L2 are context-
free, so are L1

′ and L2
′.  Since the set is closed under union, L1

′∪ L2
′ is also context-

free, as is (L1
′∪ L2

′)′.  But, this last expression is equivalent toL1∩L2 which is not 
guaranteed to be context-free.  So, our assumption must be incorrect and the set is not 
closed under complement.  
 
Here is an example of a context-free language whose complement is not context-free.  
The language {anbncn⏐n≥1} is not context-free, but the author proves that the 
complement of this language is the union of seven different context-free languages 
and is thus context-free.  Strings that are not in {anbncn⏐n≥1} must be in one of the 
following languages:  
 
 1. Mpq = {apbqcr⏐p,q,r≥1 and p>q} (more a’s than b’s) 
 2. Mqp = {apbqcr⏐p,q,r≥1 and q>p} (more b’s than a’s) 
 3. Mpr = {apbqcr⏐p,q,r≥1 and s>r} (more a’s than c’s) 

4. Mrp = {apbqcr⏐p,q,r≥1 and r>p} (more c’s than a’s) 
  5. M =  the complement of a+b+c+ (letters out of order) 
 
Using Closure Properties 

Sometimes, we can use closure properties to prove that a language is not context-free.  
Consider the language our author calls DOUBLEWORD = {ww⏐w∈(a+b)*}.  Is this 
language context-free?  Assume that it is.  Form the intersection of DOUBLEWORD 
with the regular language a+ b+ a+ b+,  we know that the intersection of a context-free 
language and a regular language is always context-free.  The intersection of 
DOUBLEWORD and is anbmanbm⏐n,m ≥ 1}.  But, this language is not context-free, 
so DOUBLEWORD cannot be context-free.  
 
Think carefully when doing unions and intersections of languages if one is a superset 
of the other.  The union of PALINDROME and (a+b)* is (a+b)*, which is regular.  
So, sometimes the union of a context-free language and a regular language is regular.  
The union of PALINDROME and a* is PALINDROME, which is context-free but not 
regular.  
 
Now try some exercises: 
 

Ex.5) Find CFG for the language over Σ = {a,b}.  
 
 (a) All words of the form  
 
  ax by az, where x, y, z = 1,2,3… and y = 5x+7z 
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(b) For any two positive integers p and q, the language of all words of 
the form ax by az, where x, y, z = 1, 2, 3… and y = px + qz. 

 

 

3.4  PUSHDOWN AUTOMATA (PDA) 

Informally, a pushdown automata is a finite automata with stack.  The corresponding 
acceptor of context-free grammar is pushdown automata.  There is one start state and 
there is a possibly empty-set of final states.  We can imagine a pushdown automata as 
a machine with the ability to read the letters of an input string, perform stack 
operations, and make state changes.  
 
The execution of a PDA always begins with one symbol on the stack.  We should 
always specify the initial symbol on the stack.  We assume that a PDA always begins 
execution with a particular symbol on the stack.  A PDA will use three stack 
operations as follows:  
 

(i) The pop operation reads the top symbol and removes it from the stack.  
(ii) The push operation writes a designated symbol onto the top of the stack.  

For example, push (x) means put x on top of the stack.  
(iii) The nop does nothing to the stack.  

 
We can represent a pushdown automata as a finite directed graph in which each state 
(i.e., node) emits zero or more labelled edges.  Each edge from state i to state j 
labelled with three items as shown in the Figure 7, where L is either a letter of an 
alphabet or ∧, S is a stack symbol, and 0 is the stack operation to be performed.  
 

            
0

LS  

   i                                j 
 
                                   Fig. 7: Directed graph 
 
It takes fine pieces of information to describe a labelled edge.  We can also represent 
it by the following 5-tuple, which is called a PDA instruction.  
 

(i, L, S, 0, j)  
An instruction of this form is executed as follows, where w is an input string whose 
letters are scanned from left to right.  
 
If the PDA is in state i, and either L is the current letter of w being scanned or L = ∧, 
and the symbol on top of the stack is S, then perform the following actions:  
 

(1) execute the stack operation 0; 
(2) move to the state j; and 
(3) if L ≠ ∧, then scan right to the next letter of w.  

 
A string is accepted by a PDA if there is some path (i.e., sequence of instructions) 
from the start state to the final state that consumes all letters of the string.  Otherwise, 
the string is rejected by the PDA.  The language of a PDA is the set of strings that it 
accepts.  
 
Nondeterminism: A PDA is deterministic if there is at most one move possible from 
each state.  Otherwise, the PDA is non-deterministic.  There are two types of non-
determinism that may occur.  One kind of non-determinism occurs exactly when a 
state emits two or more edges labelled with the same input symbol and the same stack 
symbol.   In other words, there are two 5-tuples with the same first three components.  
For example, the following two 5-tuples represent nondeterminism:  

(i, b, c, pop, j) 
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  (i, b, c, push(D), k). 
 
The second kind of nondeterminism occurs when a state emits two edges labelled 
with the same stack symbol, where one input symbol is ∧ and the other input symbol 
is not.  For example, the following two 5-tuples represent non-determinism because 
the machine has the option of consuming the input letter b or cleaning it alone.  
 

(i, ∧, c, pop, j) 
  (i, b, c, push(D), k). 

 
Example 14:  The language {anbn⏐n≥0} can be accepted by a PDA.  We will keep 
track of the number of a’s in an input string by pushing the symbol Y onto the stack 
for each a.  A second state will be used to pop the stack for each b encountered.  The 
following PDA will do the job, where x is the initial symbol on the stack:  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8: Pushdown Automata 

 
The PDA can be represented by the following six instructions: 
 

(0, ∧, X, nop, 2) 
       (0, a, X, push(Y), 0), 
       (0, a, Y, push(Y), 0), 

(0, b, Y, pop,1), 
(1, b, Y, pop,1), 
(1, ∧, X, nop,2). 

 
This PDA is non-deterministic because either of the first two instructions in the list 
can be executed if the first input letter is a and X is on the top of the stack.  A 
computation sequence for the input string aabb can be written as follows:  
 

(0, aabb, X) start in state 0 with X on the stack, 
(0, abb, YX) consume a and push Y,  

(0, bb, YYX)  consume a and push Y, 
(1, b, YX)  consume b and  pop. 
(0, ∧, X)  consume b and pop . 

(2, ∧, X)  move to the final state. 
 
Equivalent Forms of Acceptance:  

Above, we defined acceptance of a string by a PDA in terms of final state acceptance.  
That is a string is accepted if it has been consumed and the PDA is in a final state.  
But, there is an alternative definition of acceptance called empty stack acceptance, 
which requires the input string to be consumed and the stock to be empty, with no 
requirement that the machine be in any particular state.  The class of languages 
accepted by PDAs that use empty stack acceptance is the same class of languages 
accepted by PDAs that use final state acceptance.  
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Example 15: (An empty stack PDA):  Let’s consider the language {anbn⏐n≥0}, the 
PDA that follows will accept this language by empty stack, where X is the initial 
symbol on the stack. 
 
 
 
 
 
 
 
 

Fig. 9: Pushdown Automata 
 
PDA shown in figure 9 can also be represented by the following three instructions:  
 

(0, a, X, push (X), 0), 
                                                    (0, ∧, X, pop, 1), 
                                                    (1, b, X, pop, 1). 
 
This PDA is non-determinstic.  Let’s see how a computation proceeds.  For example, 
a computation sequence for the input string aabb can be as follows:  
 

(0, aabb, X) start in state 0 with X on the stack  
(0, abb, XX) consume a and push X 
(0, bb, XXX) consume a and push X 

(1, bb, XX) pop. 
(1, b, X) consume b and pop 

(1, ∧, ∧) consume b and pop (stack is empty) 
 
Now, try some exercises.  
 
Ex.6) Build a PDA that accepts the language odd palindrome. 

  
Ex.7) Build a PDA that accepts the language even palindrome. 

 
3.5 NON-CONTEXT FREE LANGUAGES  

Every context free grammar can always be represented in a very interesting form. 
This form is known as Chomsky Normal Form (CNF). 
A context-free grammar is said to be in Chomsky Normal Form if the right hand side 
of each production has either a terminal or two variables as S → a, S → AB and S→ 
∧ if ∧ ε L (G).  If ∧ ε L (G), then S should not appear to the right hand side of any 
production.,  To construct a CFG in, CNF we can develop a method. In CFG, S→ a is 
already allowed, if the production is of form S → aA then can be replaced with S → 
BA and B→a in CNF.  If the production is of the form S → ABC, it can be written as 
S → AD and D → BC.  Using these simple methods, every CFG can be constructed 
in CNF. 
 
Example 16:  Reduce the following grammar, into CNF. 
 

(i) S → a AB,  A → a E/bAE, E → b, B → d 
(ii) S → A0B, A →AA/ 0S/0, B → 0BB/ 1S/1 

 
Solution:  (i)  S → a AB is rewritten in CNF as S → FG, F→a and G→AB 
  A → aE is rewritten as  A→FE in CNF. 
  A → bAE in CNF is A → HI, H→b and I→ AE. 
So Chomsky Normal Form of CFG is  
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S→FG, F→a, G→AB, A→FE, A→HI, 
H→b,  I→AE, E→b and B→d 
 
(ii) left as an exercise. 
      
In this section, we will prove that not all languages are context-free.  Any context-
free grammar can be put into Chomsky Normal Form.  Here is our first theorem.  
 
Theorem 5: Let G be a grammar in Chomsky Normal Form.  Call the productions 
that have two non-terminals on the righthand side live productions and call the ones 
that have only a terminal on the right-hand side dead productions.  If we are restricted 
to using the live productions of the grammar at most once each, we can generate only 
a finite number of words.  
 
Proof:  Each time when we use a live production, we increase the number of non-
terminals in a working string by one.  Each time when we use a dead production, we 
decrease the number of non-terminals by one.  In a derivation starting with non-
terminal S and ending with a string of terminals, we have to apply one more dead 
production than live production.  
 
Suppose G has p live productions.  Any derivation that does not reuse a live 
production can use at most p live and p+1 dead productions.  Each letter in the final 
string results from one dead production, so words produced without reusing a live 
production must have no more than p+1 letters.  There are a finite number of such 
words.  
 
When doing a leftmost derivation, we replace the leftmost non-terminal at every step.  
If the grammar is in Chomsky Normal Form, each working string in a leftmost 
derivation is made up of a group of terminals followed by a group non-terminals.  
Such working strings are called leftmost Chomsky working strings.  
 
Suppose we use a live production Z → XY twice in the derivation of some word w.,  
Before the first use of Z → XY the working string has the form s1Zs2 where s1 is a 
string of terminals and s2 is a string of nonterminals.  Before the second use of Z → 
XY the working string has form s1s3Zs4 where s3 is a string of terminals and s4 is a 
string of non-terminals. 
 
Suppose we draw a derivation tree representing the leftmost derivation in which we 
use Z → XY twice.  The second Z we add to the tree could be a descendant of the 
first Z or it could come from some other nonterminal in s2.  Here are examples 
illustrating the two cases: 
 
Case 1:  Z is a descendant of itself.  
 
S → AZ 
Z → BB 
B → ZA 

⏐  b 
A → a 
 
Beginning of a leftmost derivation:  
 
S ⇒ AZ 
   ⇒ aB 
   ⇒ aBB 
   ⇒ abB 
   ⇒ abZA 
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Derivation tree is shown in figure 10:  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10: Leftmost derivation tree 
 
Case 2:  Z comes from a nonterminal in s2.  
S → AA 
A → ZC 

⏐  a 
C → ZZ 
Z → b 
 
Beginning of a leftmost derivation:  
S ⇒ AA 
   ⇒ ZCA 
   ⇒ bCA 
   ⇒ bZZA 
  
Derivation tree is shown in figure 11:   
 
 
 
 
 
 
 
 
 
 

Fig.  11: Derivation Tree 
 
In the first tree, Z is a descendant of itself.  In the second, tree this is not true.  Now, 
we will show that if a language is infinite, then we can always find an example of the 
first type of tree in the derivation tree of any string that is long enough.  
 
Theorem 6: If G is a context-free grammar in Chomsky Normal Form that has p live 
productions, and if w is a word generated by G that has more than 2p letters in it, then 
somewhere in every derivation tree for w there is an example of some non-terminal. 
Call it Z, being used twice where the second Z is descended from the first.  
 
Proof: If the word w has more than 2p letters in it, then the derivation tree for w has 
more than p+1 levels.  This is because in a derivation tree drawn from a Chomsky 
Normal Form grammar, every internal node has either one or two children.  It has one 
child only if that child is a leaf.  At each level, there is at most twice the number of 
nodes as on the previous level.  A leaf on the lowest level of the tree must have more 
than p ancestors.  But, there are only p different live productions so if more than p 
have been used, then some live production has been used more than once.  The non-
terminal on the lefthand-side of this live production will appear at least twice on the 
path from the root to the leaf.  
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In a derivation, a non-terminal is said to be self-embedded if it ever occurs as a tree 
descendant of itself.  The previous theorem says that in any context-free grammar, all 
sufficiently long words have leftmost derivations that include a self-embedded non-
terminal.  Shorter derivations may have self-embedded non-terminals, but we are 
guaranteed to find one in a sufficiently long derivation.  
 
Consider the following example in which we find a self-embedded non-terminal:  
 
S →  AX 

⏐  BY 
⏐  AA 
⏐  BB 
⏐  a 

     ⏐  b 
X → SA 
Y → SB 
A → a 
B → b 
 
 
 
 
 
 
 
 
 
 

Fig. 12: A derivation Tree for the String aabaa 
The production X  → SA and S → AX were used twice.  Let’s consider the X 
production and think about what would happens if we used this production a third 
time.  What string would we generate?  Corresponding tree is given in figure 13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13: Derivation Tree of String aaabaaa 
 
This modified tree generates the string aaabaaa.  We could continue reusing the rule 
X → SA over and over again.  Can you tell what the pattern is in the strings that we  
would be producing? 
 
The last use of X products the sub-string ba.  The previous X produced an a to the left 
of this ba and an a to the right of the ba.  The X before that produced an a to the left 
and an a to the right.  In general, X produces anbaan.  S produces an a to the left of an 
X and nothing to the right.  So, the strings produced by this grammar are of the form 
aanbaan.  If all we wish n to signify is a, count that must be the same, then we can 
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simplify this language description to anban for n≥1.  Reusing the X → SA rule 
increases the number of a’s in each group by one each time we use it.  
 
Here is another example:  
 
S → AB 
A → BC 
     ⏐  a 
B → b 
C → AB 
 
In the derivation of the string bbabbb, A → BC is used twice.  Look at the red 
triangular shapes in the following derivation tree.  We could repeat that triangle more 
times and we would continue to generate words in the language.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14: Derivation tree 
 
Pumping Lemma for Context-Free Languages 
 
Theorem 7:  If G is any context-free grammar in Chomsky Normal Form with p live 
productions and w is any word generated by G with length > 2p, we can subdivide w 
into five pieces uvxyz such that x≠Λ, v and y are not both Λ and vxy  ≤ 2p and all 
words of the form uvnxynz for n≥0 can also be generated by grammar G.  
 
Proof: If the length of w is > 2p, then there are always self-embedded non-terminals 
in any derivation tree for w.  Choose one such self-embedded non-terminal, call it P, 
and let the first production used for P be P → QR.  Consider the part of the tree 
generated from the first P.  This part of the tree tells us how to subdivide the string 
into its five parts.  The sub-string vxy is made up of all the letters generated from the 
first occurrence of P.  The sub-string x is made up of all the letters generated by the 
second occurrence of P.  The string v contains letters generated from the first P, but 
to the left of the letters generated by the second P, and y contains letters generated by 
the first P to the right of those generated by the second P.  The string u contains all 
letters to the left of v and the string z contains all letters to the right of y.  By using 
the production P → QR more times, the strings v and y are repeated in place or 
“pumped”.  If we use the production P → QR only once instead of twice, the tree 
generates the string uxz.  
 
Here is an example of a derivation that produces a self-embedded non-terminal and 
the resulting division of the string.  
 
S → PQ 
Q → QS 
     ⏐  b 
p → a 
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Fig. 15: A derivation tree for the string abab 
 
Notice that the string generated by the first occurrence of Q is bab.  We have a choice 
for which Q we take for the second one.  Let’s first take the one to the far right.  The 
string generated by this occurrence of Q is b.  So x = b and v = ba.  In this case, y is 
empty and so is z.  The string u = a.  If we pump v and y once, we get the string 
a⏐ba⏐ba⏐b = ababab which is also in the language.  If we pump them three times, we 
get  a⏐ba⏐ba⏐ba⏐b = abababab, etc.  
 
Suppose we choose the other occurrence of Q for the second one, then we have a 
different sub-division of the string.  In this case, the substring generated by the 
second occurrence of Q is b, so x = b and v is empty.  The substring y, however, is ab 
in the case.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 16: Selection of u, x and y 

 
If we pump v and y once, we get the string a⏐b⏐ab⏐ab = ababab; three times 
produces a⏐b⏐ab⏐ab⏐ab = abababab, etc.  
 
Using the Pumping Lemma for CFLs 

We use the Pumping Lemma for context-free languages to prove that a language is 
not context-free.  The proofs are always the same:  

• Assume that the language in question is context-free and that the Pumping 
Lemma thus applies.    

• Pick the string w, w >2p 

• Sub-divide w into uvxyz such that vxy < 2p 
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• Pick i so that uvixyiz is not in the language. As in pumping lemma uvixyiz ε L, 
but it is not true. So, our assumption is not correct and the language in the 
question is not CFL. 

 
Here is an example:  
 
Example 17:   The language L = {anbnan⏐n≥1} is not a context-free language.  
 
Solution: Assume that L is a context-free language.  Then, any string in L with 
length > 2p can be sub-divided into uvxyz where uvnxynz, n≥0, are all strings in the 
language.  Consider the string a2pb2pa2p and how it might be sub-divided.  Note that 
there is exactly one “ab” in a valid string and exactly one “ba”.  Neither v nor y can 
contain ab or ba or else pumping the string would produce more than one copy and 
the resulting string would be invalid.  So both v and y must consist of all one kind of 
letters.  There are three groups of letters all of which must have the same count for 
the string to be valid.  Yet, there are only two sub-strings that get pumped, v and y.  If 
we only pump two of the groups, we will get an invalid string.  
 
A Stronger Version of the Pumping Lemma 

There are times when a slightly stronger version of the Pumping Lemma is necessary 
for a particular proof.  Here is the theorem:  
 
Theorem 8: Let L be a context-free language in Chomsky Normal Form with p live 
productions.  Then, any word w in L with length > 2p can be sub-divided into five 
parts uvxyz such that the length of vxy is no more than 2p, x≠Λ, v and y are not both 
Λ, and uvnxynz, n≥0, are all in the language L.  
 
Now, let’s see a proof in which this stronger version is necessary.  
 
Example 18: The language L = {anbmanbm⏐n,m≥1} is not context-free.  
 
Proof: Assume that L is a context-free language.  Then, any string in L with length > 
2p can be sub-divided into uvxyz where x≠Λ, v and y are not both Λ, the length of 
vxy is no more than 2p, and uvnxynz, n≥0, are all strings in the language.  Consider the 
string a2pb2pa2pb2p.  (The superscripts on each character are supposed to be 2p.  Some 
browsers can’t do the double superscript.)  Clearly, this string is in L and is longer 
than 2p.  Since the length of vxy is no more than 2p, there is no way that we can 
stretch vxy across more than two groups of letters.  It is not possible to have v and y 
both made of a’s, or v and y both made of b’s.  Thus, pumping v and y will produce 
strings with an invalid form.  Note that we need the stronger version of the Pumping 
Lemma because without it we can find a way to sub-divide the string so that pumping 
it produces good strings.  We could let u = Λ, v = the first group of a’s, x = the first 
group of b’s, y = the second group of a’s, and z = the second group of b’s.  Now, 
duplicating v and y produces only good strings.  
 
Here is another example.  
 
Example 19: DOUBLEWORD = {ss⏐s∈{a.b}*} is not a context-free language.  
 
Proof : The same proof as we used in the last case works here.  Consider the string 
a2pb2pa2pb2p (again supposed to be double superscripts.)  It is not possible to have v 
and y both made of the same kind of letter, so pumping will produce strings that are 
not in DOUBLEWORD.  
 
Now try some exercises 
 

Ex.8) Show that the language }1na{
2n ≥  is not context free. 
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Ex.9) Show that the language {ap⏐p is prime} is not context free. 
 

 

3.6 EQUIVALENCE OF CFG AND PDA.  

In Unit 2, we established the equivalence of regular languages/expressions and finite 
automata.  Similarly, the context–free grammar and pushdown automata, models are 
equivalent in the sense these define the same set of languages. 
 
Theorem 9:  Every context free Grammar is accepted by some pushdown  

        automata. 
 

Let  G = (V, T, R, S) be the given grammar 
where the components have the following meaning 
V : The set of variables 
T : The set of terminals 
R : The set of rules of the form 

A → α        with A ε V and α ε (V U T)*, 
 i.e., α is a string of terminals and non-terminals. 

S : The start symbol. 
 
Now, in terms of the given Grammer G,  we achieve our goal through the following 
three parts: 
 
(i) We construct a PDA say P = (Q, ∑, ⎡, S, q0, Z0, F) where the components 

like Q, ∑ etc., are expressed in terms of the known entities V, T, R, S  or 
some other known entities. 

(ii) To show that if string α ε L (G), then α is accepted by the PDA constructed 
by (I) above. 

(iii) Conversely, if  α is a string accepted by the PDA P constructed above, then 
α ε L (G) 

 
Part I:  For the construction of the PDA P = (Q, ∑, ⎡, S, q0, Z0, F), we should define 
the values of the various components Q, ∑, etc., in terms of already known 
components V, T, R, S of the grammar G or some other known or newly introduced 
symbols. 
 
We define the components of P as follows: 

(i) Q = the set of states of PDA = { q }, q is the only state of Q, and q is  some 
new symbol not involved in V, T, R and S 

(ii) ∑ = the set of tape symbols of P, the proposed PDA 
     = T (the terminals of the given grammar G) 
(iii) ⎡ =  the stack symbols of P, = (T U V) 
 = the set of all symbols which are terminal or non-terminals in the given  

grammar G 
(iv) q0= initial state = q ( the only state in Q is naturally the initial state also) 
(v) Z0 = S, the start symbol of the given grammar G 
(vi) F  =  {q},  
 q being the only state in the PDA P, is naturally the only final state of the 

PDA. 
(vii) Next, we show below how the required function 
           δ:  Q x ∑ x ⎡ → Power Set of (Q x ⎡) 
           is obtained in terms of the known entities Q, V, T, R and S. 
 

(a) For each rule A → β in R of the grammar G with A ε V and  
           β ε (V U T)*, 
 we define 
 δ (q, ε, A) = { ( q, β) A→β is a rule in R} 
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 (Note: There may be more than one rules with the some L.H.S, for 
example  

 A→β a     and         A→ b B C D) 
       (b)      each (terminal)     a ε T, 

          δ (q, a, a)    = {(q, ε)} 
 

This completes the definition of P, the required PDA. Next our job is to show that 
L(G), the language generated by G is same as N(P), the language accepted by P, the 
PDA which we have designed above. 
 
Proof of Parts II and III are based on the proof of the following: 

Lemma Let S = ϒ0 → ϒ1 …..→ ϒn = w = a1 a2…..an ε L (G) 
be a left-most derivation of w from grammar G, 
where 
                                            ϒi → ϒi+1
is obtained by single application of left-most derivation, using some rule of R of the 
grammar G,  
Then, to each ϒi, there is a unique configuration / ID of the PDA  as explained 
below so that ϒn corresponds to the configuration of PDA which accepts w: 
Let 
ϒi = xi αi  
where xi ε T* and αi ε (VUT)*. 
Then 
the string ϒi of the derivation 
ϒ0 = S ⇒ ϒ1 ⇒ ϒ2  … ⇒ ϒi…. ⇒ ϒn = w 
is made to correspond to the ID (yi, αi) of the pushdown automata constructed in  
Part I.  The correspondence is diagrammatically shown in figure 17 where yi is the 
yet-to-be scanned part  of the string w on the tape,  
Tape: 

 

     

 

 

 

 

 

 

 

 

Fig.17 

                                    and the first terminal in ϒI is being 

scanned by the Head 

Proof of the Lemma 

We prove the lemma by induction on i of ϒi
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Base Case:   i = 0 
ϒ0 = S 
and initially the Head scans the left-most symbol on the tape, i.e., 
 

a1 A2 ………….. an

  w 

↑ 
q   
 
thus  
ϒ0 = x0    S 
where x0= ε = empty string 
    S ε ⎡*

 
Induction hypothesis: 

We assume that  if ϒj   =  xj     αj   for j = 1, 2, …….i.  (where each αi starts with a 
non-terminal)  for each of ϒ0, ϒ1, ……, ϒi,  the correspondence between jthstrings ϒj 
in the derivation of w from S   
and the configuration config (j) given in figure 18 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 18 

Induction step 

To show that the correspondence is preserved for j = i + 1 also.  There is no loss of 
generality if we assume that if αj ≠ ε then  
αj   =  Dj  βj    for j = 1, …….i 
where Dj is a non-terminal symbol in the grammar. 
Let bi be the first symbol of yi (where bi is one of the aj’s)   
i.e    yi  = bi  zi
where zi is a string of terminals. 
ϒi+1 = xi  Di+1  ξi+1  αj
As 

 bi  

     xi        zi
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Di → ai 1 ………. ai k     Di +1……… 
∴ xi ai 1 ……. ai k  Di+1 ….. 
xi ai 1  must be a  prefix of at least 
then there must be either a production 
Di → bi …..Di+1 …….. 
a production in  G 
or A sequence of production 
Di  →  Di 1 ………… 
Di 1→  Di 2 ………. 
Di k → bi …… 
Without loss of generality, we assume that 
Di → bi ……Di+1 ………., with Di+1 being the first non-terminal from left in the 
production used in ϒi+1 from ϒI
But corresponding to this production there is a move 
S( q, ε, Di) =  (q, bi …….Di+1……..) 
using this move the config becomes 
 

 

 

 

                                    ↑ 
                                q 
 

                                   q 

 

 

Then all the b’s are popped off from the stack and Head of the tape moves to the right 
of the symbol next to be on the tape by the moves of the type 
δ (q, bi, b )   = (q, ε) 
Finally Di+1is the top configration after the  execution of the above moves gives is of 
the form 
 
x i+1 y I +1

 

 

 

 

Where  
α i+1 has a non-terminal as its left most  
symbol. 

Di+1

  bi ………. 

 

Di +1

bi

αi+1

ai1

 

 
This completes the proof of the lemma. 

Next, the lemma establishes a one-to-one correspondence between the strings ϒi in 
the derivations of w in the grammar G and the configurations of the pushdown 
automata constructed in Part I, in such a manner that ϒn = w correspond to the 
following configuration that indicates acceptance of w and vice-versa. 
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⇐                w                        ⇒ 
a1  an

                                          ↑ 

 

 

 

This completes the proof of the Part II and Part III. 

Stack 
 
S 

 

3.7 SUMMARY 

In this unit we have considered the recognition problem and found out whether we 
can solve it for a larger class of languages.  The corresponding accepter for the 
context-free languages are PDA’s.  There are some languages which are not context 
free.  We can prove the non-context free languages by using the pumping lemma. 
Also in this unit we discussed about the equivalence two approaches, of getting a 
context free language. One approach is using context free grammar and other is 
Pushdown Automata. 
 

3.8 SOLUTIONS/ANSWERS 

Ex.1) (a)  S → S[S] → [S] → [  ] 

 
 (b) S → S[S] → [S] → [S[S ]] → [[S] → [[]].  
 
 Similarly rest part can be done.  
 
Ex.2) (a) S →  aSb/aAb 
 
   A →  bA/b 
  
Ex.3) (a) S →  aSa/bSb/∧ 
 
 (b) S →  aSa/bSb/a/b. 
 
Ex.4) (a) S → ASB  (type 2 production) 
   S → b  (type 3 production) 
   A → aA (type 3 production) 
 
 So the grammar is of type 2.  
 
 (b) S → aSa  (type 2 production) 
   S → bSb  (type 2 production) 
   S → a  (type 3 production) 
   S → b  (type 3 production) 
   S → ∧  (type 3 production) 
 
 So the grammar is of type 2.  
 

(c) Type 2.  
 
Ex.5) (a) S → AB 
   S → aAb5/∧ 
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   B → b7Ba/∧ 
 
 (b) S → AB  
   A → aAbp/∧ 
   B → bqBa/∧ 
 
Ex.6) Suppose language is {wcwT:w∈{a,b}*} then pda is  
 
 (0, a, x, push (a), 0),  (0, b, x, push (b), 0), 
 (0, a, a, push (a), 0),  (0, b, a, push (b), 0), 
 (0, a, b, push (a), 0),  (0, b, b, push (b), 0), 
 (0, c, a, nop, 1),  (0, c, b, nop, 1), 
 (0, c, x, nop, 1),  (1, a, a, pop, 1), 
 (1, b, b, pop, 1),  (1, ∧, x, nop, 2), 
 
 
Ex.7) Language is {wwT:w∈{a,b}*}.  Similarly as Ex 6. 
 
Ex.8) Apply pumping lemma to get a contradiction.  The proof is similar to the proof 

that the given language is not regular.    
 
Ex.9) Apply pumping lemma to get a contradiction.  The proof is similar to the proof 

that the given language is not regular.    
 

 

78 


	3
	Lecture Notes on Theory of Computation Module 1 - Unit 3 by Dr. SK Rath
	UNIT 3   CONTEXT FREE GRAMMAR 
	Structure                                                                              Page Nos. 
	3.2    GRAMMAR AND ITS CLASSIFICATION 
	3.4  PUSHDOWN AUTOMATA (PDA) 
	 
	3.5 NON-CONTEXT FREE LANGUAGES  
	Lemma Let S = (0 ( (1 …..( (n = w = a1 a2…..an ε L (G) 
	Proof of the Lemma 

	Base Case:   i = 0 
	Induction step 
	3.7 SUMMARY 
	3.8 SOLUTIONS/ANSWERS 




