

BIJU PATNAIK UNIVERSITY OF TECHNOLOGY,

ODISHA

Lecture Notes

On

Prepared by,

Dr. Subhendu Kumar Rath,

BPUT, Odisha.

THEORY OF COMPUTATION
MODULE - 2

UNIT - 1

Turing Machine

UNIT 1 TURING MACHINE

Structure Page Nos.

1.0 Introduction 5

1.1 Objectives 7
1.2 Prelude to Formal Definition 7
1.3 Turing Machine: Formal Definition and Examples 9
1.4 Instantaneous Description and Transition Diagram 14
1.5 Some Formal Definitions 17
1.6 Observations 20
1.7 Turing Machine as Computer of Functions 22
1.8 Modular Construction of Complex Turing Machines 32
1.9 Summary 44
1.10 Solutions/Answers 45
1.11 Further Readings 54

1.0 INTRODUCTION
Not every problem can be solved
through computational means

Gödel (1931)Every system—natural or man-made, must be continuously, involved in some form of
computation in its attempt at preserving its identity as a system.

The earth, revolves around the Sun along almost identical paths, revolution after
revolution; being almost at the corresponding points in the paths after a specific period
of time within the revolutions. So is true of every planet in the solar system. To be at
the corresponding points in their paths, revolution after revolution, must involve some
computation within the solar system. But, the same should be true of any system, not
just of the solar system. Thus, phenomenon of computation is as universal as is the
phenomena of motion. In order to have better understanding of the phenomena of
motion, we think of different approaches, use some models and formulate some
principles.

If a problem can be solved by some
computational means, then there is
a Turing Machine that solves the
problem…..Turing Machine is an
ultimate model of computation

Church-Turing Thesis (1936)

Similarly, attempts at capturing the essence of the universal phenomenon of
computation are made through various approaches, models and principles.

As happens in the case of modeling of motion, inadequacy of one model (e.g.
Newtonian model) in capturing essence of motions leads to another, more robust
model (e.g. Einstein’s model), so happens in the case of modeling of computation, as
is discussed below.

In the previous units, we discussed two of the major approaches to modeling of
computation viz. the automata/machine approach and linguistic/grammatical
approach. Under grammatical approach, we discussed two models viz Regular
Languages and Context-free Languages.

Under automata approach, we discussed two models viz. Finite Automata and
Pushdown Automata.

Further, we defined the concept of computational equivalence and established that

 Turing Machine is named so, in Honour of its inventor Alan Mathison Turing (1921-1954).

A.M. Turing, a British, was one of the greatest scholars of the twentieth century, and made profound
contributions to the foundations of computer science. On the lines of Nobel prize, in memory of Alfred
B. Nobel, for some scientific disciplines; ACM, to commemorate A.M. Turing, presents since 1966
annually Turing Award to an individual for contributions of a technical nature that are judged to be of
lasting and major importance to the field of computing science.

5

Turing Machine and
Recursive Functions

(i) Finite Automata computational model is computationally equivalent to
Regular Language Model.

(ii) Push-down Automata Model is computationally equivalent to context-Free
language model.

(iii) Pushdown Automata (or equivalently Context-Free Language) model is more
powerful computational model in comparison to Finite Automata (or
equivalently Regular Language) model in the sense that every language
accepted by Finite Automata is also recognized by Pushdown Automata.
However, there are languages, viz. the language {xn yn : n ε N}, which are
recognized by pushdown automata but not by Finite Automata.

… The limits of mathematics
discovered by Turing sound
more serious, more dangerous
than the ones that Godel found.
…And this is the invention of the
computer, for this crazy kind of
theoretical argument! You don’t
see billions and billions of
dollars of technology in this
1936 paper, but it was all there in
embryonic form, as von
Neumann kept emphasizing: the
universal Turing machine is
really the notion of a general-
purpose programmable
computer…
 Chaitin#

(iv) There are languages, including the language {xn yn zn: n N}, which are not
accepted even by Push-down automata.

This prompts us to discuss other, still more powerful, automata models and
corresponding grammar models of computation.
Turing machine (TM) is the next more powerful model of automata approach
which recognizes more languages than Pushdown automata models do. Also Phrase-
structure model is the corresponding grammatical model that matches Turing
machines in computational power.

In this unit, we attempt a facile and smooth introduction to the concept of Turing
Machine in the following order:

 We give a formal definition of the concept and then illustrate the involved
ideas through a number of examples and remarks.

 We show how to realize some mathematical functions as TMs.
 Further, we discuss how to construct more and more complex TMs through

the earlier constructed TMs, starting with actual constructions
(mathematically)of some simple TMs.

 In a later unit, we discuss other issues like extensions, (formal) languages,
properties and equivalences, in context of TMs.

Key words: Turing Machine (TM), Deterministic Turing Machine, Non-
Deterministic Turing Machine, Turing Thesis, Computation, Computational
Equivalence, Configuration of TM, Turing-Acceptable Language, Turing Decidable
Language, Recursively Enumerable Language, Turing Computable Function

Notations

TM : Turing Machine
 : Set of tape symbols, includes #, the blank symbol
 : Set of input/machine symbols, does not include #

Q : the finite set of states of TM
F : Set of final states
a,b,c… : Members of
σ : Variable for members of
 x or x : Any symbol of other than x

: The blank symbol
α,β,γ: Variables for String over
L : Move the Head to the Left
R : Move the Head to the Right
q : A state of TM, i.e, q ε Q
s or q0 : The start/initial state

Exploring Randomness By Gregory J. Chaitin, Springer-Verlag (2001)

 6

Turing Machine Halt or h: The halt state. The same symbol h is used for the purpose of denoting

halt state for all halt state versions of TM. And then h is not used for
other purposes.

e or ε : The empty string

C1 ├M C2: Configuration C2 is obtained from configuration C1in one move

 Of the machine M
C1├

*C2: Configuration C2 is obtained from configuration C1in finite number
 of moves.
w1 a w2: The symbol a is the symbol currently being scanned by the Head

Or

w1 a w2: The symbol a is the symbol currently being scanned by the Head
 ↑

1.1 OBJECTIVES

After going through this unit, you should be able to:

 define and explain various terms mentioned under the title key words in the
previous section.

 construct TMs for simple computational tasks
 realize some simple mathematical functions as TMs
 apply modular techniques for the construction of TMs for more complex

functions and computational tasks from TMs already constructed for simple
functions and tasks

1.2 PRELUDE TO FORMAL DEFINITION
In the next section, we will notice through a formal definition of TM that a TM is an
abstract entity constituted of mathematical objects like sets and a (partial) function.
However, in order to help our understanding of the subject-matter of TMs, we can
visualize a TM as a physical computing device that can be represented as a diagram as
shown in1.2.1 below.

Infinite Tape

d a b # c b …… …… ….. …..

 Read /Write
 Head

Finite Control

 TURING MACHINE

Fig. 1.2.1

7

Turing Machine and
Recursive Functions

Such a view, in addition to being more comprehensible to human beings, can be a
quite useful aid in the design of TMs accomplishing some computable tasks, by
allowing informal explanation of the various steps involved in arriving at a particular
design. Without physical view and informal explanations, whole design process
would be just a sequence of derivations of new formal symbolic expressions from
earlier known or derived symbolic expressions not natural for human
understanding.

According to this view of TM, it consists of

(i) a tape, with an end on the left but infinite on the right side. The tape is divided
into squares or cells, with each cell capable of holding one of the tape symbols
including the blank symbol #. At any time, there can be only finitely many cells
of the tape that can contain non-blank symbols. The set of tape symbols is
denoted by

As the very first step in the sequence of operations of a TM, the input, as a
finite sequence of the input symbols is placed in the left-most cells of the
tape. The set of input symbols denoted by , does not contain the blank
symbol #. However, during operations of a TM, a cell may contain a tape
symbol which is not necessarily an input symbol.
There are versions of TM, to be discussed later, in which the tape may be infinite in
both left and right sides having neither left end nor right end.

(ii) a finite control, which can be in any one of the finite number of states.

The states in TM can be divided in three categories viz.

(a) the Initial state, the state of the control just at the time when TM starts its

operations. The initial state of a TM is generally denoted by q0 or s.
(b) the Halt state, which is the state in which TM stops all further operations.

The halt state is generally denoted by h. The halt state is distinct from the
initial state. Thus, a TM HAS AT LEAST TWO STATES.

(c) Other states

(iii) a tape head (or simply Head), is always stationed at one of the tape cells and

provides communication for interaction between the tape and the finite control.
The Head can read or scan the symbol in the cell under it. The symbol is
communicated to the finite control. The control taking into consideration the
symbol and its current state decides for further course of action including

 the change of the symbol in the cell being scanned and/or
 change of its state and/or
 moving the head to the Left or to the Right. The control may decide not to

move the head.

The course of action is called a move of the Turing Machine. In other words, the
move is a function of current state of the control and the tape symbol being
scanned.

In case the control decides for change of the symbol in the cell being scanned, then
the change is carried out by the head. This change of symbol in the cell being
scanned is called writing of the cell by the head.

Initially, the head scans the left-most cell of the tape.

Now, we are ready to consider a formal definition of a Turing Machine in the next
section.
 8

Turing Machine

1.3 TURING MACHINE: FORMAL DEFINITION
AND EXAMPLES

There are a number of versions of a TM. We consider below Halt State version of
formal definition a TM.

Definition: Turing Machine (Halt State Version)

A Turing Machine is a sextuple of the form (Q, , , , qo, h), where

(i) Q is the finite set of states,

(ii) is the finite set of non-blank information symbols,

(iii) is the set of tape symbols, including the blank symbol #

(iv) is the next-move partial function from Q to Q {L, R, N},
 where ‘L’ denotes the tape Head moves to the left adjacent cell, ‘R’ denotes

tape Head moves to the Right adjacent cell and ‘N’ denotes Head does not
move, i.e., continues scanning the same cell.

 In other words, for qi Q and ak , there exists (not necessarily always,

because is a partial function) some qj Q and some al such that (qi ak) =
(qj, al, x), where x may assume any one of the values ‘L’, ‘R’ and ‘N’.

 The meaning of (qi, ak) = (qj, al, x) is that if qi is the current state of the TM,

and ak is cell currently under the Head, then TM writes al in the cell currently
under the Head, enters the state qj and the Head moves to the right adjacent cell,
if the value of x is R, Head moves to the left adjacent cell, if the value of x is L
and continues scanning the same cell, if the value of x is N.

(v) q0 Q, is the initial/start state.

(vi) h Q is the ‘Halt State’, in which the machine stops any further activity.

Remark 1.3.1

Again, there are a number of variations in literature of even the above version of TM.
For example, some authors allow at one time only one of the two actions viz. (i)
writing of the current cell and (ii) movement of the Head to the left or to the right.
However, this restricted version of TM can easily be seen to be computationally
equivalent to the definition of TM given above, because one move of the TM given by
the definition can be replaced by at most two moves of the TM introduced in the
Remark.

In the next unit, we will discuss different versions of TM and issues relating to
equivalences of these versions.

In order to illustrate the ideas involved, let us consider the following simple
examples.

Example 1.3. 2:

Consider the Turing Machine (Q, , , , qo, h) defined below that erases all the non-
blank symbols on the tape, where the sequence of non-blank symbols does not contain
any blank symbol # in-between:

Q= {qo, h} = {a, b}, = {a, b, #}
and the next-move function is defined by the following table:

9

Turing Machine and
Recursive Functions

q: State : Input Symbol (q,)
q0 a {q0, #, R}
q0 b {q0, #, R}
q0 # {h, #, N}
h # ACCEPT

Next, we consider how to design a Turing Machine to accomplish some
computational task through the following example. For this purpose, we need
the definition.

A string Accepted by a TM

A string over is said to be accepted by a TM M = (Q, , , , q0, h) if when the
string is placed in the left-most cells on the tape of M and TM is started in the
initial state q0 then after a finite number of moves of he TM as determined by ,
Turing Machine is in state h (and hence stops an further operations. The concepts will
be treated in more details later on. Further, a string is said to be rejected if under the
conditions mentioned above, the TM enters a state q h and scans some symbol x,
then (q, x) is not defined.

Example 1.3.3

Design a TM which accepts all strings of the form bn dn for n 1 and rejects all other
strings.

Let the TM M to be designed is given by M = (Q, , , , q0, h) with = { b, d}. The
values of Q, , , shall be determined by the design process explained below.
However to begin with we take = {b, d, #}.

We illustrate the design process by considering various types of strings which are to
be accepted or rejected by the TM.

As input, we consider only those strings which are over {b, d}. Also, it is assumed
that, when moving from left, occurrence of first # indicates termination of strings over

Case I: When the given string is of the form bn dm (b d)* for n ≥ 1, m ≥ 1as shown

below for n = 2 m = 1

We are considering this particular type of strings, because, by taking simpler cases of
the type, we can determine some initial moves of the required TM both for strings to
be accepted and strings to be rejected.

b b d - - - -

Where ‘-‘ denotes one of b, d or #

Initially, TM should mark left-most b. The term mark is used here in this sense that
the symbol is scanned matching with corresponding b or d as the case may be. To
begin with, the TM should attempt to match, from the left, the first b to the d which is
the first d after all b’s have exhausted. For this purpose, TM should move right
skipping over all b’s. And after scanning the corresponding d, it should move
left, until we reach the b, which is the last b that was marked.

Next, TM should mark the b, if it exists, which is immediately on the right of the
previously marked b. i.e., should mark the b which is the left-most b which is yet to be
marked.

 10

Turing Machine

But, in order to recognize the yet-to-be-marked left-most b, we must change each of
the b’s, immediately on marking, to some other symbol say B. Also, for each b, we
attempt to find the left-most yet-to-be-marked d. In order to identify the left-most
yet-to-be-marked d, we should change each of the d’s immediately on marking it, by
some other symbol say D.

Thus we require two additional Tape symbols B and D, i.e, = {b, d, B, D #}.

After one iteration of replacing one b by B and one d by D the tape would be of the
form

B b D - - - -

and the tape Head would be scanning left-most b.

In respect of the states of the machine, we observe that in the beginning, in the
initial state q0, the cell under the Head is a b, and then this b is replaced by a B; and at
this stage, if we do not change the state then TM would attempt to change next b
also to B without matching the previous b to the corresponding d. But in order to
recognize the form bn dn of the string we do not want, in this round, other b’s to be
changed to B’s before we have marked the corresponding d. Therefore

 (q0, b) = (q1, B, R)

Therefore, the state must be changed to some new state say q1. Also in order to locate
corresponding d, the movement of the tape Head must be to the right. Also, in state
q1, the TM Head should skip over all b’s to move to the right to find out the first d
from left. Therefore, even on encountering b, we may still continue in state q1.
Therefore, we should have

 (q1, b) = (q1, b, R)

However, on encountering a d, the behaviour of the machine would be different, i.e.,
now TM would change the first d from left to D and start leftward journey. Therefore,
after a d is changed to D, the state should be changed to say q2. In state q2 we start
leftward journey jumping over D’s and b’s. Therefore

 (q1, d) = (q2, D, L) and
 (q2, D) = (q2, D, L) and
 (q2, b) = (q2, b, L)

In q2, when we meet the first B, we know that none of the cells to the left of the
current cell contains b and, if there is some b still left on the tape, then it is in the cell
just to the right of the current cell. Therefore, we should move to the right and then if
it is a b, it is the left-most b on the tape and therefore the whole process should be
repeated, starting in state q0 again.

Therefore, before entering b from the left side, TM should enter the initial state q0.
Therefore

 (q2, B) = (q0, B, R)

For to-be-accepted type string, when all the b’s are converted to B’s and when the
last d is converted to D in q2, we move towards left to first B and then move to right in
q0 then we get the following transition:

from configuration

B B D D # #

11

Turing Machine and
Recursive Functions

 q2

 to configuration
B B D D # #

 q0

Now we consider a special subcase of bn dm (b d)*, in which initially we have the
following input

b D b ……..

Which after some moves changes to

B D b

 q0

The above string is to be rejected. But if we take (q0, D) as q0 then whole process
of matching b’s and d’s will be again repeated and then even the (initial) input of the
form

 b d b # #

will be incorrectly accepted. In general, in state q0, we encounter D, if all b’s have
already been converted to B’s and corresponding d’s to D’s. Therefore, the next state
of (q0, D) cannot be q0.

Let

 (q0, D) = (q3, D, R)

As explained just above, for a string of the to-be-accepted type, i.e., of the form bn dn,
in q3 we do not expect symbols b, B or even another d because then there will be more
d’s than b’s in the string, which should be rejected.

In all these cases, strings are to be rejected. One of the ways of rejecting a string
say s by a TM is first giving the string as (initial) input to the TM and then by not
providing a value of in some state q h, while making some move of the TM.

Thus the TM, not finding next move, stops in a state q h. Therefore, the string
is rejected by the TM.

Thus, each of (q3, b), (q3, B) and (q3, D) is undefined

Further, in q3, we skip over D’s, therefore

 (q3, D) = (q3, D, R)

Finally when in q3, if we meet #, this should lead to accepting of the string of the form
bn dn, i.e, we should enter the state h. Thus

 (q3, #) = (h, #, N)

Next, we consider the cases not covered by bn dm (b d)* with n ≥ 1, m ≥ 1 are.
Such

Case II when n = 0 but m 0, i.e. when input string is of the form dm (b d)* for
m 0.
 12

Turing Machine Case III when the input is of the form bn #, n 0

Case IV when the input is of the form # …………..

Now we consider the cases in detail.

Case II:

d ………

 q0

The above string is to be rejected, therefore, we take (q0, d) as undefined

Case III. When the input is of the form bn # #…#…, say

 b #

 q0

After one round we have

B #

 q1

As the string is to be rejected, therefore,

 (q1, #) is undefined

Case IV: When # is the left-most symbol in the input

…. # … # ….

 q0

As the string is to be rejected, therefore, we take (q0, #) as undefined

We have considered all possible cases of input strings over = {b,d} and in which,
while scanning from left, occurrence of the first # indicates termination of strings
over .

After the above discussion, the design of the TM that accepts strings of the form
bndn and rejects all other strings over {b, d}, may be summarized as follows:

The TM is given by (Q, , , , q0, h) where
Q = {q0, q1, q2, q3, h}

 = { b, d}
 = {b, d, B, D, #}

The next-move partial function is given by

 b d B D #
q0 {q1, B, R) * * (q3, D, R) *
q1 {q1, b, R) {q2, D, L) * {q1, D, R) *
q2 {q2, b, L) * (q0, B, R) {q2, D, L) *
q3 * * * (q3, D, R) (h, #, N)
h * * * * Accept

13 ‘*’ Indicates the move is not defined.

Turing Machine and
Recursive Functions

Remark 1.3.4

In general, such lengthy textual explanation as provided in the above case of
design of a TM, is not given. We have included such lengthy explanation, as the
purpose is to explain the very process of design. In general, table of the type given
above along with some supporting textual statements are sufficient as solutions to
such problems. In stead of tables, we may give Transition Diagrams (to be
defined).

Ex. 1) Design a TM that recognizes the language of all strings of even lengths over
the alphabet {a, b}.

Ex. 2) Design a TM that accepts the language of all strings which contain aba as a
sub-string.

1.4 INSTANTANEOUS DESCRIPTION AND
TRANSITION DIAGRAMS

1.4.1 Instantaneous Description

The following differences in the roles of tape and tape Head of Finite Automaton
(FA) and pushdown Automaton (PDA) on one hand and in the roles of tape and tape
head of Tuning Machine on other hand need to be noticed:

(i) The cells of the tape of an FA or a PDA are only read/scanned but are never
changed/written into, whereas the cells of the tape of a TM may be written
also.

(ii) The tape head of an FA or a PDA always moves from left to right. However,

the tape head of a TM can move in both directions.
As a consequence of facts mentioned in (i) and (ii) above, we conclude that in
the case of FA and PDA the information in the tape cells already scanned do
not play any role in deciding future moves of the automaton, but in the case of
a TM, the information contents of all the cells, including the ones earlier
scanned also play a role in deciding future moves. This leads to the slightly
different definitions of configuration or Instantaneous Description (ID) in
the case of a TM.

The total configuration or, for short just, configuration of a Turing Machine is the
information in respect of:

(i) Contents of all the cells of the tape, starting from the left–most cell up to atleast
the last cell containing a non-blank symbol and containing all cells upto the cell
being scanned.

(ii) The cell currently being scanned by the machine and

(iii) The state of the machine.

Some authors use the term Instantaneous Description instead of Total
Configuration.

Initial Configuration: The total configuration at the start of the (Turing) Machine is
called the initial configuration.

Halted Configuration: is a configuration whose state component is the Halt state
 14

Turing Machine There are various notations used for denoting the total configuration of a Turing

Machine.

Notation 1: We use the notations, illustrated below through an example:

Let the TM be in state q3 scanning the symbol g with the symbols on the tape as
follows:

b d a f # g h k # # # #

Then one of the notations is

b d a f # g h k # # # #

 q3

Notation 2: However, the above being a two-dimensional notation, is sometimes
inconvenient. Therefore the following linear notations are frequently used:
 (q3,##bdaf#,g,hk), in which third component of the above 4-component vector,
contains the symbol being scanned by the tape head.

Alternatively, the configuration is also denoted by (q3,## bdaf# g hk), where the

symbol under the tape head is underscored but two last commas are dropped.

It may be noted that the sequence of blanks after the last non-blank symbol, is not
shown in the configuration. The notation may be alternatively written (q3, w, g, u)
where w is the string to the left and u the string to the right respectively of the symbol
that is currently being scanned.

In case g is the left-most symbol then we use the empty string e instead of w.
Similarly, if g is being currently scanned and there is no non-blank character to the
right of g then we use e, the empty string instead of u.

Notation 3: The next notation neither uses parentheses nor commas. Here the state is
written just to the left of the symbol currently being scanned by the tape Head. Thus
the configuration (q3, ##bdaf#, g, h, k) is denoted as # # bdaf#q3ghk
Thus if the tape is like

g w # …………

q5

then we may denote the corresponding configuration as (q5, e, g, u). And, if the tape
is like

a b c g

…

 q6
Then the configuration is (q6, abc, g, e) or (q6, abc g) or alternatively as abcq6g by the

following notation.

1.4.2 Transition Diagrams

In some situations, graphical representation of the next-move (partial) function of a
Turing Machine may give better idea of the behaviour of a TM in comparison to the
tabular representation of .

15

Turing Machine and
Recursive Functions

A Transition Diagram of the next-move functions of a TM is a graphical
representation consisting of a finite number of nodes and (directed) labelled arcs
between the nodes. Each node represents a state of the TM and a label on an arc from
one state (say p) to a state (say q) represents the information about the required input
symbol say x for the transition from p to q to take place and the action on the part of
the control of the TM. The action part consists of (i) the symbol say y to be written in
the current cell and (ii) the movement of the tape Head.

Then the label of an arc is generally written as x/(y, M) where M is L, R or N.

Example 1.4.2.1

Let M ={Q, , , , q0, h}
Where Q = { q0, q1, q2, h}
 = { 0, 1}
 = {0, 1, #}
and be given by the following table.

 0 1 #
q0 - - (q2, #, R)
q1 (q2, 0, R) (q1, #, R) (h, #, N)
q2 (q2, 0, L) (q1, 1, R) (h, #, N)
h - - -

Then, the above Turing Machine may be denoted by the Transition Diagram shown
below, where we assume that q0 is the initial state and h is a final state.

1/#,R

1/1, R

0/0, R

#/#, N

0/0, L

q2

q0

#/#, R

q1

#/#,N

h

Fig. 1.4.2.1

Ex. 3) Design a TM M that recognizes the language L of all strings over {a, b, c}
 with

(i) number of a’s = Number of b’s = Number of c’s and
 16

Turing Machine (ii) if (i) is satisfied, the final contents of the tape are the same as the input, i.e.,

the initial contents of the tape are also the final contents of the tape, else
rejects the string.

Ex. 4) Draw the Transition Diagram of the TM that recognizes strings of the form bn
 dn, n 1 and was designed in the previous section.

Ex. 5) Design a TM that accepts all the language of all palindromes over the alphabet
 {a, b}. A palindrome is a string which equals the string obtained by reversing
 the order of occurrence of letters in it. Further, find computations for each of
 the strings (i) babb (ii) bb (iii) bab.

Ex. 6) Construct a TM that copies a given string over {a, b}. Further find a
 computation of the TM for the string aab.

1.5 SOME FORMAL DEFINITIONS

In the previous sections of the unit, we have used, without formally defining some of
the concepte like move, acceptance and rejection of strings by a TM. In this section,
we define these concepts formally

In the rest of the section we assume the TM under consideration is
 M= (Q, , , , q0 h)

Definition: Move of a Turing Machine. We give formal definition of the concept
by considering three possible different types of moves, viz.

 ‘move to the left’,
 ‘move to the right’, and
 ‘Do not Move’.

 For the definition and notation for Move, assume the TM is in the configuration
(q, a1 a2 … ai-1, ai , ai+1 … an)

Case (i) (ai, q) = (b, p, L), for motion to left
Consider the following three subcases:

Case i(a) if i > 1, then the move is the activity of TM of going from the configuration

(q, a1 a2 … ai-1, ai , ai+1 … an) to the configuration
(p, a1 … ai-2, ai-1, ai ai + 1 … an) and is denoted as
q, a1 a2 … ai-1, ai , ai+1 … an) ├m (p, a1…,ai-2, ai-1, b, ai + 1 … an).

The suffix M, denoting the TM under consideration, may be dropped, if the machine
under consideration is known from the context.

Case i(b) if i = 1, the move leads to hanging configuration, as TM is already
scanning left-most symbol and attempts to move to the left, which is not possible.
Hence move is not defined.

Case i(c) when i = n and b is the blank symbol #, then the move is denoted as
(q, a1 a2 … an-1, an, e) ├ (q, a1 a2 … an-2, an-1, ε,e).

Case (ii) (ai, q) = (b, p, R), for motion to the right

Consider the following two subcases:

Case ii(a) if i < n then the move is denoted as

17

Turing Machine and
Recursive Functions

 (q, a1 …ai-1, ai, ai+1… an) |– (p, a1, …ai-1 b ai + 1, ai+2 … an)

Case ii(b) if i = n the move is denoted as
 (q, a1 …an-1, an,,e) |– (p, a1 …, #, e)

Case (iii) (ai, q) = (b, p, ‘No Move’) when Head does not move.

 then the move is denoted as
 (q, a1 … ai-1,ai, ai+1… an) |– (p, a1… ai-1, b, ai + 1 … an)

Definition: A configuration results (or is derived) from another configuration.

We illustrate the concept through an example based on say Case (iii) above of the
definition of ‘move’. In this case, we say the configuration (p, a1 … ai-1, b, ai + 1 …
an) results in a single move or is derived in a single move from the configuration
(q, a1…ai-1,ai, ai +1… an). Also, we may say that the move yields the configuration
(p, a1… ai-1, b, ai + 1 … an) or the configuration (q, a1…ai-1,ai, ai +1… an) yields the
configuration (p, a1… ai-1, b, ai + 1 … an) in a single move.

Definition: Configuration results in n Moves or finite number of moves.

If, for some positive integer n, the configurations c1, c2 … cn are such that ci results
from ci–1 in a single move, i.e.,
 ci–1 |– ci for i = 2, … n
then, we may say that cn results from c1 in n moves or a finite number of moves. The
fact is generally denoted as
 c1 |– n cn or c1 |– * cn
The latter notation is the preferred one, because generally n does not play significant
role in most of the relevant discussions.

The notation c1 |– * cn also equivalently stands for the statement that c1 yields cn in
finite number of steps.

Definition: Computation

If c0 is an initial configuration and for some n, the configurations c1, c2, …, cn are
such that c0, |– c1 |– … |– cn, then, the sequence of configurations c0, c1 … cn
constitutes a computation

Definition: A string ε *acceptable by a TM

 is said to be acceptable by TM M if (q0,) |–* (h, r) for r ε *
Informally, is acceptable by M, if when the machine M is started in the initial state
q0 after writing on the leftmost part of the tape, then, if after finite number of
moves, the machine M halts (i.e., reaches state h and of course, does not hang and
does not continue moving for ever) with some string of tape symbols, the original
string is said to be accepted by the machine M

Definition: Length of computation

 If C0 is initial configuration of a TM M and C0, C1…., Cn is a computation, then n is
called the length of the computation C0, C1, ….Cn.

Definition: Input to a computation

In the initial configuration, the string, which is on that portion of the tape beginning
with the first non-blank square and ending with the last non-blank square, is called
input to the computation.

Definition: Language accepted by a TM

 18

Turing Machine M = (, , , , q0, h), denoted by L(M), and is defined as

L(M) = { | * and if = a1 … an then

(q0, e, a1, a,…an) |–*

(h, b1 … bj-1, bj, … bj,+1… bn)

for some b1 b2 ….bn ε *
L(M), the language accepted by the TM M is the set of all finite strings over
which are accepted by M.

Definition: Turing Acceptable Language

A language L over some alphabet is said to be Turing Acceptable Language, if there
exists a Turing Machine M such that L = L (M)

Definition: Turing Decidable Language

There are at least two alternate, but of course, equivalent ways of defining a Turing
Decidable Language as given below

Definition: A language L over , i.e, L * is said to be Turing Decidable, if both
the languages L and its complement *~ L are Turing acceptable.

Definition: A language L over , i.e, L * is said to be Turing Decidable, if there
is a function

 fL: *→ { Y, N}
 such that for each ε *

 fL () =
L if N

L if Y

Remark 1.5.1

A very important fact in respect of Turing acceptability of a string (or a language)
needs our attention. The fact has been discussed in details in a later unit about
undecidability. However, we briefly mention it below.

For a TM M and an input string ε * , even after a large number of moves we
may not reach the halt state. However, from this we can neither conclude that
‘Halt state will be reached in a finite number of moves’ nor can we conclude that
Halt state will not be reached in a finite number moves.

This raises the question of how to decide that an input string w is not accepted by
a TM M.

An input string w is said to be ‘not accepted’ by a TM M = (Q, , , , q0, h) if
any of the following three cases arise:

(i) There is a configuration of M for which there is no next move i.e., there
may be a state and a symbol under the tape head, for which does not have
a value.

(ii) The tape Head is scanning the left-most cell containing the symbol x and

the state of M is say q and (x, q) suggests a move to the ‘left’ of the
current cell. However, there is no cell to the left of the left-most cell.
Therefore, move is not possible. The potentially resulting situation (can’t
say exactly configuration) is called Hanging configuration.

19

Turing Machine and
Recursive Functions

(iii) The TM on the given input w enters an infinite loop. For example if

configuration is as

 x y

 q0

and we are given
 (q0, x) = (q1, x, R)
and (q1, y) = (q0, y, L)
Then we are in an infinite loop.

1.6 OBSERVATIONS

The concept of TM is one of the most important concepts in the theory of
Computation. In view of its significance, we discuss a number of issues in respect of
TMs through the following remarks.

Remark 1.6.1

Turing Machine is not just another computational model, which may be further
extended by another still more powerful computational model. It is not only the most
powerful computational model known so far but also is conjectured to be the ultimate
computational model. In this regard, we state below the

Turing Thesis: The power of any computational process is captured within the class
of Turing Machines.

It may be noted that Turing thesis is just a conjecture and not a theorem, hence,
Turing Thesis can not be logically deduced from more elementary facts. However, the
conjecture can be shown to be false, if a more powerful computational model is
proposed that can recognize all the languages which are recognized by the TM model
and also recognizes at least one more language that is not recognized by any TM.
 In view of the unsuccessful efforts made in this direction since 1936, when Turing
suggested his model, at least at present, it seems to be unlikely to have a more
powerful computational model than TM Model.

Remark 1.6.2

The Finite Automata and Push-Down Automata models were used only as accepting
devices for languages in the sense that the automata, when given an input string from
a language, tells whether the string is acceptable or not. The Turing Machines are
designed to play at least the following three different roles:

(i) As accepting devices for languages, similar to the role played by FAs and

PDAs.

(ii) As a computer of functions. In this role, a TM represents a particular function

(say the SQUARE function which gives as output the square of the integer given
as input). Initial input is treated as representing an argument of the function.
And the (final) string on the tape when the TM enters the Halt State is treated as
representative of the value obtained by an application of the function to the
argument represented by the initial string.

(iii) As an enumerator of strings of a language that outputs the strings of a

language, one at a time, in some systematic order, i.e, as a list.

 20

Turing Machine

Remark 1.6.3

Halt State of TM vs. set of Final States of FA/PDA

We have already briefly discussed the differences in the behaviour of TM on entering
the Halt State and the behaviour of Finite Automata or Push Down Automata on
entering a Final State.

A TM on entering the Halt State stops making moves and whatever string is there on
the tape, is taken as output irrespective of whether the position of Head is at the end
or in the middle of the string on the tape. However, an FA/PDA, while scanning a
symbol of the input tape, if enters a final state, can still go ahead (as it can do on
entering a non-final state) with the repeated activities of moving to the right, of
scanning the symbol under the head and of entering a new state etc. In the case of
FA PDA, the portion of string from left to the symbol under tape Head is accepted if
the state is a final state and is not accepted if the state is not a final state of the
machine.

To be more clear we repeat: the only difference in the two situations when an FA/PDA
enters a final state and when it enters a non-final state is that in the case of the first
situation, the part of the input scanned so far is said to be accepted/recognized,
whereas in the second situation the input scanned so far is said to be unaccepted.

Of course, in the Final State version of TM (discussed below), the Head is
allowed movements even after entering a Final State. Some definite statement like
‘Accepted/Recognized’ can be made if, in this version, the TM is in Final State.

Remark 1.6.4

Final State Version of Turing Machine

Instead of the version discussed above, in which a particular state is designated as
Halt State, some authors define TM in which a subset of the set of states Q is
designated as Set of Final States, which may be denoted by F. This version is
extension of Finite automata with the following changes, which are minimum required
changes to get a Turing Machine from an FA.

(i) The Head can move in both Left and Right directions whereas in PDA/FA the

head moves only to the Right.

(ii) The TM, while scanning a cell, can both read the cell and also, if required,
change the value of the cell, i.e., can write in the cell. In Finite Automata, the
Head only can read the cell. It can be shown that the Halt State version of TM is
equivalent to the Final State version of Turing Machine.

(iii) In this version, the TM machine halts only if in a given state and a given symbol
under the head, no next move is possible. Then the (initial) input on the tape of
TM, is unacceptable.

Definition: Acceptability of ε * in Final State Version

Let M1 = (Q, , , , q0, F)
be a TM in final state version. Then w is said to be acceptable if C0 is the initial
configuration with w as input string to M1 and

 C0 ├* Cn

is such that

Cn = (p, α, a,)

21

Turing Machine and
Recursive Functions

with p in F, set of final states, and a ε , the set of tape symbols, and α, ε *

Equivalence of the Two Versions

We discuss the equivalence only informally. If in the Halt state version of a TM in
stead of the halt state h, we take F= {h} then it is the Final state version of the TM.
Conversely, if F= { f1, f2,……fr} is the set of final states then we should note the fact
that in the case of acceptance of a string, a TM in final state version enters a final state
only once and then halts with acceptance. Therefore if we rename each of the final
state as h, it will not make any difference to the computation of an acceptable or
unacceptable string over . Thus F may be treated as {h}, which further may be
treated as just h.

1.7 TURING MACHINES AS COMPUTER OF
FUNCTIONS

In the previous section of this unit, we mentioned that a Turing Machine may be used
as

(i) A language Recognizer/acceptor

(ii) A computer of Functions

(iii) An Enumerator of Strings of a language.

We have already discussed the Turing Machine in the role of language accepting
device. Next, we discuss how a TM can be used as a computer of functions

Remark 1.7.1

For the purpose of discussing TMs as computers of functions, we make the following
assumptions:

 A string over some alphabet say will be written on the tape as # #, where #
is the blank symbol.

 Also initially, the TM will be scanning the right-most # of the string # #.

Thus, the initial configuration, (q0, # #) represents the starting point for the
computation of the function with as input.

The assumption facilitates computation of composition of functions.

Though, most of the time, we require functions of one or more arguments having only
integer values with values of arguments under the functions again as integers, yet, we
consider functions with domain and codomain over arbitrary alphabet sets say 0 and

1 respectively, neither of which contains the blank symbol #.

Next we define what is meant by computation, using Turing Machine, of a
function

f: 0
* 1

*

Definition: A function f: f: 0

* 1
* is said to be Turing-Computable, or simply

computable, if there is a Turing Machine M = (Q, , , , q0, h), where contains the
following holds:

(q0, # #,) |–*
m (h, # #,) 22

Turing Machine

whenever 0
* and 1

* satisfying f() = .

Remark 1.7.2

It may be noted that, if the string contains some symbols from the set

 - 0, i.e, symbols not belonging to the domain of f, then the TM may hang or may
not halt at all.

Remark 1.7.3

Next, we discuss the case of functions which require k arguments, where k may be
any finite integer, greater than or equal to zero. For example,
the operation PLUS takes two arguments m and n and returns m + n.

The function f with the rule
f (x, y, z) = (2x + y) * z
 takes three arguments.

The function C with rule
C () = 17
takes zero number of arguments

Let us now discuss how to represent k distinct arguments of a function f on the
tape. Suppose k = 3 and x1 x2, y1 y2 y3 and z1 z2 are the three strings as three
arguments of function f. If these three arguments are written on the tape as

x1 x2 y1 Y2 y3 z1 z2 #

then the above tape contents may even be interpreted as a single argument viz.
x1 x2, y1 y2 y3 z1 z2. Therefore, in order, to avoid such an incorrect interpretation,
the arguments are separated by #. Thus, the above three arguments will be written on
the tape as

x1 x2 # y1 Y2 y3 # z1 z2 #

In general, if a function f takes k 1 arguments say 1, 2, …, k where each of these
arguments is a string over 0 (i.e., each i belongs to 0

*) and if f (1, 2, …, k) =
for some 1

*; then we say f is Turing Computable if there is a Turing Machine
M such that

(q0 , e, # 1# 2 …# k#, e) |–*
M (h, e, # #, e)

Also, when f takes zero number of arguments and f() = then, we say f is
computable, if there is a Turing Machine M such that

(q0 , e, # #, e) |–*
M (h, e, # #, e)

Remark 1.7.4

Instead of functions with countable, but otherwise arbitrary sets as domains and
ranges, we consider only those functions, for each of which the domain and range is
the set of natural numbers. This is not a serious restriction in the sense that any
countable set can, through proper encoding, be considered as a set of natural numbers.

For natural numbers, there are various representations; some of the well-known
representations are Roman Numerals (e.g. VI for six), Decimal Numerals (6 for six),

23

Turing Machine and
Recursive Functions

Binary Numerals (110 for six). Decimal number system uses 10 symbols vis. 0, 1, 2,
3,4, 5, 6, 7, 8 and 9. Binary number system uses two symbols denoted by 0 and 1.
In the discussion of Turing Computable Functions, the unary representation
described below is found useful. The unary number system uses one symbol only:

Let the symbol be denoted by I then the number with name six is represented as I I I I
I I. In this notation, zero is represented by empty/null string. Any other number say
twenty is represented in unary systems by writing the symbol I, twenty times. In order
to facilitate the discussion, the number n, in unary notation will be denoted by In in
stead of writing the symbol I, n times.

The advantage of the unary representation is that, in view of the fact that most of the
symbols on the tape are input symbols and if the input symbol is just one, then the
next state will generally be determined by only the current state, because the other
determinant of the next state viz tape symbol is most of the time the unary symbol.

We recall that for the set X, the notation X* represents the set of all finite strings of
symbols from the set X. Thus, any function f from the set of natural number to the set
of natural numbers, in the unary notation, is a function of the form f : {I}* {I}*

Definition: The function f: N N with f(n) = m for each n ε N and considered as
f: {I}* {I}*, with {I} a unary number system, will be called Turing Computable
function, if a TM M can be designed such that M starting in initial tape
configuration

 # I I ……. I #

with n consective I’s between the two #’s of the above string, halts in the following
configuration

 # I I …… I #

containing f(n) = m I’s between the two #’s

The above idea may be further generalized to the functions of more than one
integer arguments. For example, SUM of two natural numbers n and m takes two
integer arguments and returns the integer (n + m). The initial configuration with the
tape containing the representation of the two arguments say n and m respectively, is of
the form

 # I I … I # I I ……I #

where the string contains respectively n and m I’s between respective pairs of #’s and
Head scans the last #. The function SUM will be Turing computable if we can
design a TM which when started with the initial tape configuration as given above,
halts in the Tape configuration as given below:

I I … I I ….. I #

where the above string contains n + m consecutive I’s between pair of #’s.

Example 1.7.5

Show that the SUM function is Turing Computable

The problem under the above-mentioned example may also be stated as: Construct a
TM that finds the sum of two natural numbers.

 24

Turing Machine The following design of the required TM, is not efficient yet explains a number of

issues about which a student should be aware while designing a TM for
computing a function.

Legal and Illegal Configurations for SUM function:

In order to understand the design process of any TM for a (computable) function in
general and that of SUM in particular, let us consider the possible legal as well as
illegal initial configuration types as follows.

Note: in the following, the sequence ‘…’ denotes any sequence of I’s possibly empty
and the sequences ‘ ***’ denotes any sequence of Tape symbols possibly empty and
possibly including #. Underscore denotes the cell being scanned.

Legal initial configuration types:

Configuration (i)

 q0
representing n = 0, m =0

Configuration (ii)

I … # ***

 q0
n = 0, m 0

Configuration (iii)

I … # # ***

 q0
n 0, m = 0

Configuration (iv)

I … # I … # ***

 q0
n 0, m 0

We treat the following configuration

… # … # … #

 q0

containing two or more than two #’s to the left of # being scanned in initial
configuration, as valid, where ‘…’ denotes sequence of I’s only.

Some illegal initial configurations:

Configuration (v)

*** I … ***

25

Turing Machine and
Recursive Functions

 ↑

Where at least one of *** does not contain # and initially the Head is scanning an I or
any symbol other than # . The configuration is invalid as it does not contain required
number of #’s.

Configuration (vi), though is a special case of the above-mentioned configuration, yet
it needs to be mentioned separately.

I *** # ***
 ↑

Left most symbol is I or any other non-# symbol
Where *** does not contain any #,
Configuration (vii)

… # ***
 ↑

Where *** does not contain # then the configuration represents only one of the
natural numbers.

Also, in case of legal initial configurations, the final configuration that represents the
result m + n should be of the firm.

 # ….. #

 halt

with ‘…’ representing exactly m + n I’s.

Also in case of illegal initial configurations, the TM to be designed, should be in
one of the following three situations indicating non-computability of the function
with an illegal initial input, as explained at the end of Section 1.5:

(i) the TM has an infinite loop of moves;

(ii) the TM Head attempts to fall off the left edge (i.e. the TM has Hanging

configuration); or

(iii) the TM does not have a move in a non-Halt state.

We use the above-mentioned description of initial configurations and the
corresponding final configurations, in helping us to decide about the various
components of the TM to be designed:

At this stage, we plan how to reach from an initial configuration to a final
configuration. In the case of this problem of designing TM for SUM function, it is
easily seen that for a legal initial configuration, we need to remove the middle # to get
a final configuration.

(a) Summing up initially the machine is supposed to be in the initial state (say) q0

(b) In this case of legal moves for TM for SUM function, first move of the Head

should be to the Left only

(c) In this case, initially there are at least two more #’s on the left of the # being

scanned. Therefore, to keep count of the #’s, we must change state after

 26

Turing Machine scanning each # . Let q1, q2 and q3 be the states in which the required TM enters

after scanning the three #’s

(d) In this case the movement of the Head, after scanning the initial # and also after

scanning one more # on the left, should continue to move to the Left only, so as
to be able to ensure the presence of third # also. Also, in states q1 and q2, the
TM need not change state on scanning I.

Thus we have
 (q0, #) = (q1, #, L),
 (q1, #) = (q2, #, L)

 and
 (q1, I) = (q1, I, L), (q2, I) = (q2, I, L).

However, from this point onward, the Head should start moving to the Right.

 (q2, #) = (q3, #, R).
Thus, at this stage we are in a configuration of the form

 q3

For further guidance in the matter of the design of the required TM, we
again look back on the legal configurations.

(e) In the configuration just shown above in q3, if the symbol being scanned is # (as

in case of configuration (i) and configuration (ii)), then the only action required
is to skip over I’s, if any, and halt at the next # on the right.

 However, if the symbol being scanned in q3 of the above configuration, happens

to be an I (as in case of configuration (iii) and configuration (iv)) then the
actions to be taken, that are to be discussed after a while, have to be different.

 But in both cases, movement of the Head has to be to the Right. Therefore, we

need two new states say q4 and q5 such that
 (q3, #) = (q4, #, R)
 (the processing scanning argument on the left, is completed).
 (q3, I) = (q5, I, R)
 (the scanning of the argument on the left, is initiated).

Taking into consideration the cases of the initial configuration (i) and configuration
(ii) we can further say that
 (q4, I) = (q4, I, R)
 (q4, #) = (halt, #, N)

Next, taking into consideration the cases of initial configuration (iii) and configuration
(iv) cases, we decide about next moves including the states etc in the current state q5.

We are in the following general configuration
(that subsumes the initial configuration (iii) and configuration (iv) cases)

I # #

 q5

Where the blank spaces between #’s may be empty or non-empty sequence of I’s.
Next landmark symbol is the next # on the right. Therefore, we may skip over the I’s
without changing the state i.e

27

Turing Machine and
Recursive Functions

 (q5, I) = (q5, I, R)

But we must change the state when # is encountered in q5, otherwise, the next
sequence of I’s will again be skipped over and we will not be able to distinguish
between configuration (iii) and configuration (iv) for further necessary action.
Therefore
 (q5, #) = (q6, #, R)

(notice that, though at this stage, scanning of the argument on the left is completed,
yet we can not enter in state q4, as was done earlier, because in this case, the
sequence of subsequent actions have to be different. In this case, the# in the middle
has to be deleted, which is not done in state q4)

Thus, at this stage we have the general configuration as

q6

Next, in q6, if the current symbol is a #, as is the case in configuration (iii), then we
must halt after moving to the left i.e.

 (q6, #) = (halt, #, L)
 we reach the final configuration

0# I # #

 halt

However, if we are in the configuration (iv) then we have

I # I #

 q6
Then the following sequence of actions is required for deleting the middle #:

Action (i): To remove the # in the middle so that we get a continuous sequence of I’s
to represent the final result. For this purposes, we move to the left and replace the #
by I. But then it will give one I more than number of I’s required in the final result.

Therefore

Action (ii): We must find out the rightmost I and replace the rightmost I by # and
stop, i.e, enter halt state. In order to accomplish Action (ii) we reach the next # on the
right, skipping over all I’s and then on reaching the desired #, and then move left to an
I over there. Next, we replace that I by # and halt.

Translating the above actions in terms of formal moves, we get

For Action (i)

 (q6, I) = (q7, I, L)
 (q7, #) = (q8, I, R)

(at this stage we have replaced the # in the middle of two sequences of I’s by an I)

 28 For Action (ii)

Turing Machine

 (q8, I) = (q8, I, R)
 (q8, #) = (q9, #, L)
 (q9, I) = (halt, #, N)

It can be verified that through above-mentioned moves, the designed TM does not
have a next-move at some stage in the case of each of the illegal configurations.

Formally, the SUM TM can be defined as:

SUM = (Q, , , , q0, h)
where Q = { q0, q1,….q10, halt}
 = { I }
 = { I, # }
and

the next-move (partial) function is given by the Table

 I #
q0 - (q1, #, L)
q1 (q1, I, L) (q2, #, L)
q2 (q2, I, L) (q3, #, R)
q3 (q5, I, R) (q4, #, R)
q4 (q4, I, R) (halt, #, N)
q5 (q5, I, R) (q6, #, R)
q6 (q7, I, L) (halt, #, L)
q7 - (q8, I, R)
q8 (q8, I, R) (q9, #, L)
q9 (halt, #, N)

halt - -

‘–’ indicates that is not defined

Remark 1.7.6

As mentioned earlier also in the case of design of TM for recognizing the language of
strings of the form bndn, the design given above contains too detailed explanation of
the various steps. The purpose is to explain the involved design process in fine
details for better understanding of the students. However, the students need not
supply such details while solving a problem of designing TM for computing a
function. While giving the values of Q, , explicitly and representing either by a
table or a transition diagram, we need to give only some supporting statements to help
understanding of the ideas involved in the definitions of Q, , and .

Example 1.7.7

 Construct a TM that multiplies two integers, each integer greater than or equal to zero
(Problem may also be posed as: show that multiplication of two natural numbers is
Turing Computable)

Informal Description of the solution:

The legal and illegal configurations for this problem are the same as those of the
problem of designing TM for SUM function. Also, the moves required to check the
validity of input given for SUM function are the same and are repeated below:

 (q0, #) = (q1, #, L)
 (q1, #) = (q2, #, L)

29

Turing Machine and
Recursive Functions

 (q1, I) = (q1, I, L)
 (q2, #) = (q3, #, R)
 (q2, I) = (q2, I, L)

Next, we determine the rest of the behaviour of the proposed TM.

Case I

When n = 0 covering configuration (i) and configuration (ii) The general
configuration is of the form

 q3
To get representation of zero, as, one of the multiplier and multiplic and is zero, the
result must be zero. We should enter state say q4 which skips all I’s and meets the
next # on the right.

Once the Head meets the required #, Head should move to the left replacing all I’s by
#’s and halt on the # it encounters so that we have the configuration

 Halt

The moves suggested by the above explanation covering configuration (i) and
configuration (ii) are:

 (q3, #) = (q4, #, R)
 (q4, I) = (q4, I, R)
 (q4, #) = (q5, #, L)
 (q5, I) = (q5, #, L)
 (q5, #) = (Halt, #, R)

Case II

Covering configuration (iii), we have at one stage

I # #

 q3

If we take (q3, I) = (q4, #, R), then we get the following desired configuration in
finite number of moves:

 Halt

Case III

While covering the configuration (iv), At one stage, we are in the configuration

 n I’s m I’s
I … # I #
 30

Turing Machine q3

In this case, the final configuration is of the form
 m n I’s
… # I I … I #

 Halt

The strategy to get the representation for n m I’s consists of the following steps

(i) replace the left-most I in the representation of n by # and then copy the m I’s in

the cells which are on the right of the # which was being scanned in the initial
configuration. In the subsequent moves, copying of I’s is initiated in the cells
which are in the left-most cells on the right hand of last I’s on the tape,
containing continuous infinite sequence of #’s.

 Repeat the process till all I’s of the initial representation of n, are replaced by #.
At this stage, as shown in the following figure, the tape contains m I’s of the
initial representation of the integer m and additionally n.m I’s. Thus the tape
contains m extra #’s than are required in the representation of final result.
Hence, we replace all I’s of m by #’s and finally skipping over all I’s of the
representation of (n . m) we reach the # which is on the right of all the (n . m)
I’s on the tape as required.

 Alternatively: In stead of copying n times of the m I’s, we copy only (n-1)

times to get the configuration

I # I ….. I # I ……… I #

 m I’s ((n-1).m) I’s

Then we replace the # between two sequences of I’s by I and replace the right-most I
by # and halt.

The case of illegal initial configurations may be handled on similar lines as were
handed for SUM Turing machine

Remark 1.7.8

The informal details given above for the design of TM for multiplication function
are acceptable as complete answer/solution for any problem about design of a
Turing Machine. However, if more detailed formal design is required, the
examiner should explicitly mention about the required details.

Details of case (iii) are not being provided for the following reasons

(i) Details are left as an exercise for the students

(ii) After some time we will learn how to construct more complex machines out of

already constructed machines, starting with the construction of very simple
machines. One of the simple machines discussed later is a copying machine
which copies symbols on a part of the tape, in other locations on the tape.

Ex. 7) Design a TM to compute the binary function MONUS (or also called PROPER
SUBTRACTION) defined as follows:

 Monus : N x N → N

 (Note 0 also belongs to N)

 such that

31

Turing Machine and
Recursive Functions monus (m, n) =

else
nmifnm

0

Ex.8) To compute the function n (mod 2)

Let if f denotes the function, then

f: N → {0, 1}
is such that

f (n) =
oddisnif
evenisnif

1
,0

1.8 MODULAR CONSTRUCTION OF COMPLEX
TURING MACHINES

In the previous example of constructing a Turing Machine even for a simple task of
multiplying two numbers, we saw construction was quite complex. The handling of
complexity can be attempted by looking at the total machine in terms of sub-
machines.

In this section, we look at the task of constructing complex Turing Machines by
suitably combining already constructed simplerTuring Machines. For this
purpose, we discuss some Basic Machines and Rules for combining already
constructed machines into more complex machines. Also, we develop notation for
expressing the involved rules and denoting the process for combining.

We begin by giving below rules of combining Turing Machines to get more complex
TMs from the already constructed Turing Machines. Let M be the TM which is to be
constructed by combining the already constructed machines viz. M1, M2, …., Mk,
where Mi = {Qi, i, i, i, q0i, hi} and M = {Q, , , , q0, h} and
M will start its actions in the machine M1.

Then the rules for constructing M out of Mi are:

Rule 1: Assume all the sets Q1, Q2 … Qk, are all mutually disjoint sets. If there is an
overlap, then rename the elements of some sets so that all the sets are mutually
disjoint.

Rule 2: The state q0i, the initial state of M1 will be the initial state of M i.e. q0 = q01;
however, the initial state status of q02, ….. q0k is removed. Also, the set of states for
M will contain as its subset each of Qi for i = 1, 2, …, k.

Rule 3: The halt-state status of each hi = i = 1, 2, …, k is removed and a new state h
is included in Q which will serve as the halt state of M. However, each hi remains
astate of M, but its status as halt state is removed.

Thus
(In the following U denotes set union)

Q = , UU }{
1

hQ
k

i
i

where h U
k

i
iQ

1

 32

Turing Machine

Rule 4: contains and U
k

i
i

1

 contains . U
k

i
i

1

It may be noted that may contain some more symbols, in addition to the symbols in

 and similarly may contain some more symbols, in addition to the symbols in

.

U
k

i
i

1

U
k

i
i

1

Rule 5(i): If the composite machine M is to halt on reaching hi with symbol currently
being scanned as x, then introduce a move (hi, x) = (h, x, N).
Rule 5(ii) If, in stead of halting in the state hi, of machine Mi, while scanning the
symbol x, the composite machine M is required to transfer the control to some
machine say Mb = {Qb, b, b, i, q0b, hb} in some state say p and the symbol x is
required to be replaced by z then introduce the move (hi, x) = (p, z, N).
Diagrammatically we have

Fig. 1.8.1

This completes the details of the general rules for obtaining a composite machine
out of already designed machines as components. However, there may be some
special rules for design of each particular composite machine.

Example 1.8.1

Let Mi = {Qi, i, i, i, qi, hi} for i = 1, 2
be two given TMs. We are required to construct a TM which first simulates M1 and
then M2 and halts.
Then M is obtained by taking
M = (Q, , , , q, h)
Where
Q = Q1 Q2 {h}

 = 1 2, = 1 2, q = q1 and h = h2
and consists of
(i) all the moves defined by 1
(ii) all the moves defined by 2
(iii) (h1, x) = (q2, x, N) for all x (where q2 is the initial state of M2)
In words: M is obtained by

(i) taking initial state q1 of M1 as initial state of M

(ii) removing halt state status of h1 of M1 and initial state status of q2 of M2

33

Turing Machine and
Recursive Functions

(iii) Introducing moves from the (old) halt state h1 of M1 to be (old) initial state
q2 of M for each symbol x of the tape s.t.

 (h1, x) = (q2, x, N)

Diagrammatically M is given by

M

 M1 M2

q2 h2

q1 h1

x

Fig. 1.8.2

Example 1.8.2

Let us consider one way of combining the following three machines. (There are many
possible ways of combining these three machines). For all the three machines, the
input symbol set = {0, 1} and = {0, 1, #} are the same. Further,

M1 = (Q1, 1, 1, 1, q10, h1), which finds the first 1 after the current symbol and
halts, and is given by Q1 = (q10, q11, h1) with

1 (q10, x) = (q11, x, R) for each of x = 0, 1 and #
1 (q11, 0} = (q11, 0, R),
1 (q11, #) = (q11, #, R); and
1 (q11, 1) = (h1, 1, N)

M0 = (Q0, , , 0, q00, h0), which finds the first 0 after the current symbol and halts,
is given by Q0 = {q00, q01, h0} with

0 (q00, x) = (q01, x, R) for each of x = 0, 1 and #,

0 (q01, 1) = (q01, 1, R),
 (q01, #) = (q01, #, R); and

0 (q01, 0) = (h, 0, N)

M3 = (Q3, , , 3, q3, h3), which moves the tape Head one cell to the right and Halts
where

Q3 = {q30, h3}

3 (q30, x) = (h3, x, R) for each of x = 0, 1 or #.

Now we combine the above three Turing Machines M1, M2 and M3 as building blocks,
so that the constructed composite Machine M finds the first occurrence of a non-
blank symbol (i.e., symbol which is a 0 or a 1) after skipping two symbols, viz,
currently being scanned symbol and the immediately next symbol. For example, the
composite machine returns

(i) 1 for each of the following input strings
 0###10# or
 00##10# or
 001#00
 34

Turing Machine (ii) 0 for each of the strings

 11#0 or
 11###0 or
 110##1

The Turing Machine M is given by

M = (Q, , , , q03, h), where
Q1= {q00, q01, h0, q10, q11, h1, q30, h3, h}

In the machine M, q00 and q10 are not initial states. Also h1, h2, h3, are no more halt
states and h is the new Halt State.

In addition to simulating moves of M0, M1 and M3, the following moves are
added:

 (h3, *) = (q00, *, N)
 (h3,) = (q10, , N), where ‘*’ is any symbol from ,

so that from M3, we may go to M0 or M1on scanning any symbol.
Further in order to halt in the new machine, we introduce

 (h0, *) = (h, *, N)
 (h1, *) = (h, *, N), where ‘*’ is any symbol from ,

Note: The constructed machine is of Non-Deterministic (to be defined) type.
After appropriate shortcut Notations, the combined TM is graphically as shown
below:

M1

1

0

M0

M3

Fig. 1.8.3
Some Short cut Notations:

(i) If there is the same output and same next state for more than one inputs in
a particular state, then single labeled arrow may be used instead of more
than one arrow, e.g., The part of the transition diagram

35 Fig. 1.8.4

Turing Machine and
Recursive Functions

may be replaced by

Fig. 1.8.5

 (ii) Further, in the case discussed above, if = {a, b, c, d}, is the set of tape
symbols, then the diagram may be further modified as

Fig. 1.8.6

where denotes ‘except for b, on all other tape symbols’.

The same shorthand is used when instead of states p and q in the two figures above,
we have component machines M1 and M2.

Fig. 1.8.7

Further, if on all inputs the composite machine operates as machine M1 until M1 halts,
and then M2 and then operates as M2 would operate, then the following notation may
be used.

M1 M2

Fig. 1.8.8

Where there are no labels on the arrow.

 36

Turing Machine (iii) If the composite machine M is such that first it operates as machine M1 until it

halts and then operates as say M2 or M3 depending on the symbol being scanned
at the time of halting of M1, say out of a or b respectively, then the following
notation is used.

M3

M1

b

M2
a

Fig. 1.8.9
In the case of above composition of machines, in addition to all moves defined by 1
and 2 for machines M1 and M2 we have the additional moves:
(i) (h1, a) = (q2, a, N) and
(ii) (h1, b) = (q3, b, N),
where h1 is the halt state of M1 and q2 and q3 are the initial states of M2 and M3
respectively.

Some Basic Machines and Notations:

As the purpose is to explain how complex machines are obtained combining basic
machines, the basic machines do not necessarily start scanning the left-most symbol.

There are two types of basic machines viz.

(i) Symbol Writing Machines: Let M = (Q, , , , q0, h) where and let a be

a particular symbol such that for some (q0, x) = (h, a, N) for all x
 (where x is used in the sense of a variable, which actually is not a member of).

 This machine after starting in the initial state q0 and reading any symbol, writes
‘a’ in place of the current symbol and halts.

 We denote such machines by Wa or sometimes just by a

 Where a may denote the symbol a as well as the machine that writes a.

 However, context will resolve whether a particular occurrence denotes the
symbol or the machine.

(ii) Right/Left head Moving Machines:

(a) Right Head Moving Machine
 Let M = (Q, , , , q0, h) and is given by
 (q0, x) = (h, x, R) for all x
 (where x is used in the sense of a variable, which actually is not a member of).
 This machine in the initial state q0 scans the current symbol and whatever may

be the current symbol, moves Head one square to the Right and halts.
 Such a machine is denoted by R.

(b) Left Head Moving Machine
 Similarly, if a machine in the initial state q0, scans the current symbol, and

whatever may be the current symbol, it moves Head are square to the left and
then halt;

 such a machine is denoted by L.

37

Turing Machine and
Recursive Functions

(c) A machine which goes on moving to the Right except when it meets a specific

symbol say a , and on meeting a, the machine halts. Such a machine is
denoted by

Fig. 1.8.10

Where a denotes any symbol from ~ {a}
Or is denoted by

Fig. 1.8.11

Or is denoted by just
Ra
(note in Ra there is no bar on a).

Therefore Ra finds the occurrence of first a to the right and halts.

(d) Thus

#
R denotes the machine, which finds the first non-blank symbol on the

right.

In general,
a

R denotes the machine which while moving to the right skips all
a’s and halts on finding a symbol different from a

(e) La finds the occurrence of the first a to the left and halts.
#

L denotes the
machine, which finds the first non-blank symbol on the left and halts.
In general

a
L denotes the machine which while moving to the left skips all a’s

and halts on finding a symbol different from a. On scanning the symbol a, the
machine halts. Such a machine may be denoted by either of the following three
notations:

OR

 Fig. 1.8.12 1.8.13

 38

Turing Machine Using the above notation and basic machines we provide notation for more

complex machines.

Example 1.8.3

 > R R denotes a machine, which in the initial state moves the Head one
square to the Right and halts if the new symbol being scanned is not a. However, if
the new symbol being scanned is a then, the Head moves Right once more.

a

Remark 1.8.4

(i) We should note the difference between Ra and Ra (and similarly La and La)

Ra denotes the machine that finds the first a on the Right. But Ra denotes a
machine which first moves to the right and then writes ‘a’ in place of the new
symbol being scanned. Further,

(ii) the sequence like R a R b L denotes a combination of five machines, the first of

which moves the Head to the Right and halts; then second machine writes an a
in the current cell and halts; then the third machine again moves the Head to the
Right and halts; then the fourth machine writes ‘b’ in the current cell and halts;
and then finally the last machine moves the Head to the Left and halts. Thus, if
initially the Tape configuration is as follows:

……… c b a b d # a c b # …….

Then after all the actions of the above-mentioned combined machine, the Tape
configuration will be

c b a a b # a c b #

However, the combined machine RaRb L when starts in the same Tape
configuration, viz.,

c b a b d # a c b #
will yield

c b a b d # a c b #.

RaRb L first searches for the next a to the right on the Tape through the machine Ra.
Then Ra machine halts but Rb machine initiates and moves to the first b on the right
and halts. Then the machine L initiates and moves the Head one cell to the Left.
Another Short-Hand: We use the notation

rzyx },,

to denote that when the current symbol is any one of x, y or z then the machine should
proceed in the direction of the arrow with r representing the symbol which is actually
present

For example, M is the composite machine

39

Turing Machine and
Recursive Functions

Fig. 1.8.14

and Tape configuration is
c b a d e …

Then the machine M, first moves the Head to the Left, and it finds ‘b’ there and hence
activates the machine wd, which writes d in place of b and halts. Thus the
configuration after M has executed and halted will be

c d a d e …

Using the shorthand notation introduced above, we describe a number of Turing
Machines. Some of these machines would be quite useful in the construction of
more complex machines and hence will be given standard names.
Example 1.8.5

SR The right-shifting machine. The machine takes an input of the form

a b c b a # #
and returns
a b c b a # #
(with one extra, # on the left hand side)

First, we explain the strategy behind the construction of the machine SR.

From the current position, we move to the cell on left and note the symbol over there.
And if it is not # then copying it in the cell to the right of the cell of the noted element;
i.e., we apply . The process is repeated unless the noted symbol is #.
The process terminates on encountering #, followed by moving to the Right and
writing # over there and then moving from there to the # on the right of given
sequence of non-blank symbols. We may further explain the meaning of the
expression

LRL #

LRL #

In the above expression L means, first move to the Left. Then means note
the symbol over there and call that symbol . If the noted symbol which we call is
not # then execute R L. Otherwise take some other action denoted by a different
arrow, if any Else stop. Next R L denotes that first move to the right, write down
the symbol which was noted down earlier which we call and then move left again.

#

Therefore SR is of the form

#

#

R R#

 LRL

 40

Turing Machine Let us call execution of the following loop, starting with left-most L as one iteration.

 # LRL

Then we explain the effect of each iteration as follows:
Let us start in the configuration.

a b c b a # #
Then after one iteration we reach (just before the beginning of the left-most L)

a b c b a a #
and after next iteration we reach the configuration

a b c b b a #
Then we have

a b c c b a #
Next, we have

a a b c b a #
At this stage when SR applies L the tape is of the configuration.

a a b c b a #
Therefore, the branch R# is taken up.
i.e. we get

a b c b a #

And, finally, when R# is executed, then we get the configuration # #abcba#.

Example 1.8.6

To construct the copy machine C which takes a string of the form # # in the
initial state and gives, in the halt state, the configuration # # # where is a
string of tape symbols but not containing the blank symbol #.

First we explain how the proposed machine should work through an example and
side by side, be as given below give the construction of C. Let initially, we be in
the configuration

b a c b c c a # # …

Step I Move to the # which is on the left of the sequence of non-blank symbols. In
other words we apply L#.
After this step we would be in the configuration

b a c b c c a # # …
(i.e. first component machine would be L#)

Step II Next we move right and note the symbol (in this case b) and replace it by #
and cross over all non-blank symbols and first # on the Right to reach the second #
on the right of non-blank symbols i.e. we have the configurations # # a c b c c a # #
and we remember b also through .
We write this b in place of # being scanned, to get the configuration
a c b c c a # b . This step may be summarized as

##
RRR

Step III. Then we should come back to the original position of b through L# L# and
write back b. Thus, we reach the configuration

41

Turing Machine and
Recursive Functions

b a c b c c a # b # …

The machine component of Step III is given by

L# L#

Iterative Steps

Now copying of next symbol (which is ‘a’ in this case) can be carried out by applying
the Step II followed by Step III once again.

Final Steps

The copying process should stop when we encounter #, after a finite number of
repetitions of ‘Step II and Step III. At this stage we should move to the # which is
first on the right of the given string.

Thus the copying machine C is as given below:

 R

#

####

LLRRRL

To have better understanding, we consider the traces of some more iterations.

After second iteration of Step II and Step III, the tape configuration is

b a c b c c a # b a # # . ..
After 7 iterations we get
b a c b c c a # b a c b c c a #

As the copying machine finally scans the # following the copied part through the last
component R# of the copying machine, is justified, in view of keeping the Head on the
#, which is to the right of all non-blanks.

Finally, we get the configuration
b a c b c c a # b a c b c c a #

Example 1.8.7

Design a Turing Machine that decrements one from a positive intger, using binary
representation for integers.

Solution: In order to construct the desired machine, we consider some cases of Tape
configurations representing the binary numbers before and after subtraction of 1.

Case (i) When the given binary number is represented on the tape in the form

x1 ... xk l #

where x1 = 1 and xi may be 0 or 1 i = 2, 3, … k,then after subtraction of 1, the
representation of the number becomes

x1 ... xk 0 #

requiring the change to only the right-most bit.
 42

Turing Machine Case (ii) When the given binary number is represented on the tape in the form

x1, ..., xk 1 0 #

then after subtraction the binary number representation becomes

x1 ... xk 0 1 #
requiring the two least significant bits to be reversed.

Case (iii) When the given binary number is represented on the tape in the form
x1 ... xk 1 0 0 … 0 #
 i zeros

The number after subtraction of 1 is given by
x1 ... xk 0 1 1 1 1 1 1 #

 i ones

Thus 1 0 0 … 0 is replaced by 0 1 1 1 1 1
 i zeros i ones

Thus in case (iii), which is a generalization of case (ii), each of all the continuous
zeros from right to left, is replaced by a 1 and the 1, on the left of these 0’s is replaced
by a 0.

Case (iv) is again a special case of case (iii), in which the given binary number is
represented in the form

l 0 0 ... 0 #
then after subtraction of 1 we get the binary number representation of the form

0 1 1 1 1 1 #

However, in our binary representations, leading bit, i.e., left-most bit is always 1.
Therefore, we need to delete the leading 0, by shifting the string
‘#0 1 1 1 1 1 1#’to the left so that we get # 1 1 1 1 1 1 #

The process of subtraction of 1 from a binary number may now be summarized
as follows:

Step I: The machine starts in the following configuration # # x1 x2 …. xn # where
x1 =l and xi = 0 or 1 for i = 2, 3, ...

Step II: In view of the above case analysis, we attempt to find first 1 while moving
from right to left and changing each of the 0 on the way to a 1. And when the Head
scans the first 1, we change this 1 to a 0. This part of the machine may be represented
by

 L 0 w1
 1
 w0
Where Wi denotes ‘write i’ which can also be denoted by just i, i.e., the above
diagram may be denoted as:

0
1

1 0L

43

Turing Machine and
Recursive Functions

Step III: Next step is to remove the leading zero, if any, by shifting the rest of the
binary string to the Left. This situation may occur if the initial tape configuration is

1 0 0 ... 0 #

resulting in the configuration

0 1 1 ... 1 #.
In order that the representations is appropriate, having finally the most significant bit
as 1, we shift the rest of the string to the left so that finally the tape configuration is of
the form

l l ... 1 #

In order to execute Step III, we use L# so that configuration becomes

0 l l ... 1 #

Then move right and check the bit. If the bit is a 1 then we move to right to the next #
through R#. If the bit is a 0, then we execute the following steps:

Case III (i) Write a # over 0 to get

1 1 1... l #

Then we use SL so that we get # 1 1 ... 1 #.

 Step III may be summarized as the machine

LS

RRL

0
 #

1
#

Combing the machines of Step I, Step II and Step III

L

RRL

L

S#
 0

0
1

1

#
1

#

0

Ex.9) Construct the machine SL which transforms a string # # to #, i.e., shifts
 each element of one position to the Left.

Ex.10) To construct a Turing Machine which simulates a function 44

Turing Machine f : * * s.t.

 if * i.e. (i.e., is of the form = a1 a2 ... ak where ai)
 Then f() =
 i.e. if = a1, a2, … ak then f maps the configuration
 #a1 a2 ... ak # to the configuration
 # a1 a2 ... ak a1 a2 ... ak #

Ex. 11) Design a TM that checks for palindromes over an alphabet {c, d}. In other
words, if = {c, d} and w ε *, then the TM returns y for ‘Yes’ if w = w,R and
returns N for ‘No’ if w wR.

1.9 SUMMARY

In this unit, after giving informal idea of what a Turing machine is, the concept is
formally defined and illustrated through a number of examples. Further, it is explained
how TM can be used to compute mathematical functions. Finally, a technique is
explained for designing more and more complex TMs out of already designed TMs,
starting with some very simple TMs.

1.10 SOLUTIONS/ANSWERS

Exercise 1: The transition diagram of the required TM is as shown below:

Fig.1.10.1

The required TM M = (Q, , , , q0, h) with
Q = {q0, q1, h}

 = {a, b} and = {a, b, #}.
The next move function is given by the transition diagram above. If the input string
is of even length the TM reaches the halt state h. However, if the input string is of
odd length, then TM does not find any next move in state q1 indicating rejection of the
string.

Exercise 2: The transition diagram of the required TM is as shown below,

Fig. 1.10.2

The required TM M = (Q, , , , q0, h) with
Q = {q0, q1, q2, h}

45

Turing Machine and
Recursive Functions

 = {a, b} and = {a, b, #}.
The next move function is given by the transition diagram above.
The transition diagram almost explains the complete functioning of the required TM.
However, it may be pointed out that, if a string is not of the required type, then the
blank symbol # is encountered either in state q0 or in state q1 or in state q2. As there is
no next move for (q0, #), (q1, #) or Q(q2, #), therefore, the string is rejected.

Exercise 3: The transition diagram of the required TM is as shown below:

Fig. 1.10.3

The required TM M = (Q, , , , q0, h) with

Q = {q0, q1, q2, q3, q4, q5, q6, q7, h}

 = {a, b, c} and = {a, b, c, A, B, C, #} is shown by the diagram.

The design strategy is as follows:

Step I While moving from left to right, we find the first occurrence of a if it exists.
If such an a exists, then we replace it by A and enter state q1 either directly or after
skipping b’s and c’s through state q4.

In state q1, we move towards left skipping over all symbols to reach the leftmost
symbol of the tape and enter state q5.

In q5, we start searching for b by moving to the right skipping over all non-blank
symbols except b and if such b exists, reach state q2.

In state q2, we move towards left skipping over all symbols to reach the leftmost
symbol of the tape and enter q6.

In q6, we start searching for c by moving to the right skipping over all non-blank
symbols except c and if such c exists, reach state q3.

In state q2, we move towards left skipping all symbols to reach the leftmost symbol of
the tape and enter state q0.

If in any one of the states q4, q5 or q6 no next move is possible, then reject the string.
Else repeat the above process till all a’s are converted to A’s, all b’s to B’s and all c’s
to C’s.

Step II is concerned with the restoring of a’s from A’s, b’s from B’s and c’s from C’s,
while moving from right to left in state q7 and then after successfully completing the
work move to halt state h.

 46

Turing Machine Exercise 4: The Transition Diagram of the TM that recognizes strings of the form bn

dn, n 1 and designed in the previous section is given by the following diagram.

Fig. 1.10.4

Exercise 5: The transition diagram of the required TM is as shown below.

Fig. 1.10.5

The required TM M = (Q, , , , q0, h) with
Q = {q0, q1, q2, q3, q4, q5, h}

 = {a, b} and = {a, b, #}.
The next move function is given by the transition diagram above.

The proposed TM functions as follows:

(i) In state q0, at any stage if TM finds the blank symbol then TM has found a

palindrome of even length. Otherwise, it notes the symbol being read and
attempts to match it with last non-blank symbol on the tape. If the symbol is
a, the TM replaces it by # goes to state q1, in which it skips all a’s and b’s and
on #, the TM from q1 will go to q3 to find a matching a in last non-blank symbol
position. If a is found, TM goes to q5 replace a by #. However, if b is found
then TM has no more indicating the string is not a palindrome. However, if in
state q2 only #’s are found, then it indicates that the previous ‘a’ was the middle
most symbol of the given string indicating palindrome of odd length.

 Similar is the case when b is found in state q0, except that the next state is q2 in

this case and roles of a’s and b’s are interchanged in the above argument.

(ii) The fact of a string not being a palindrome is indicated by the TM when in state

q3 the symbol b is found or in state q4 the symbol a is found.
The initial configuration is q0babb.

The required computations are:

(i) q0babb # q2babb ├ #aq2bb ├ #abbq2# ├ #abq4b ├ #aq5b# ├ #q5ab ├ q5#ab

├ #q0ab ├ ##q1b ├ #bq1# ├ ##q3b,
 As there is no move in state q3 on b, therefore, string is not accepted.
(ii) The initial configuration is q0bb. Consider the computation:
 q0bb ├ #q2b ├ #bq2 ├ #q4b # ├ q5 ### ├ q0 # ├ h#
 (We may drop #’s in the rightmost positions).
(iii) The initial configuration is q0bab. Consider the computation:

47

Turing Machine and
Recursive Functions

 q0bab ├ #q2ab ├* #aq4b ├ #q5a #├ q5## ├ #q0#├ h#
 (Note ├* denotes sequence of any finite number of ├).

Exercise6: The transition diagram of the required TM is as shown below.

Fig. 1.10.6

The required TM M = (Q, , , , q0, h) with
Q = {q0, q1, q2, q3, q4, q5, q6, q7, h}

 = {a, b} and = {a, b, #}.

The next move function is given by the transition diagram above.
In the solution of the problem, we can deviate slightly from our convention of placing
the input string on the left-most part of the tape. In this case, we place # in the
leftmost cell of the tape followed by the input string. Therefore, in the beginning in
the initial state q0, the TM is scanning # in stead of the first symbol of the input.
Before we outline the functioning of the proposed TM let us know that for the input
string aab is placed on the tape as

a A b # # ***
and for the input, output on the tape is of the form
a a b # a a b # # ***

Outline of the functioning of the proposed TM

The TM in state q1 notes the leftmost a or b, replaces it by A or B respectively and
copies it in the next available # (the first # on the right is left as marker and is not
taken as available). If the symbol in the state q1 is a, then TM while skipping symbols
passes through state q2 and reaches q4. However, if the symbol in state q1 is b, then
TM while skipping symbols passes through state q3 and reaches state q5. Then TM
copies the symbol and reaches the state q6. Next, TM starts its leftward journey
skipping over a’s, b’s, A’s, B’s and # and meets A or B in q7. At this stage, TM goes
to state q1. Then repeats the whole process until the whole string is copied in the
second part of the tape.

But, in this process original string of a’s and b’s is converted to a string of A’s and
B’s. At this stage TM goes from q1 to state q8 to replace each A by a and each B by b.
This completes the task.

 48

Turing Machine

The Computation of the TM on input aab

The initial configuration is q0#abb. Therefore, the computation is
q0#abb ├ #q1abb ├ #Aq2ab

├ #Aaq2b ├ #Aabq2#
├ #Aab#q4 ├ #Aabq5 #a
├ #Aabq6b#a
├ #Aq6ab#a ├ #q6Aab#a
├ #Aqab#a

(At this point whole process is repeat and, therefore, we use ├*, representing a finite
number of ├)

├* #AAq0b#aa
├* #AABq0b#aab

At this stage TM enters state q7.
├ #AAq7B#aab
├ #Aq7Ab#aab
├ #q7Aab#aab
├ q7#Aab#aab
├ h#aab#aab

Exercise7 : In respect of the design of the TM (Q, , , , q0, h), where = { I } = {
I, #} where we made the following observations:

Observation1: General form of the tape is

 # I …. I # I .. I #
There are three significant positions of #, which need to be distinguished viz right-
most # on left of I’s, middle #, middle # and left-most # on the right of I’s. Therefore,
there should be change of state on visiting each of these positions of #.

Observation2: Initial configration is

 # I …. I # I …. I #

 q0
and as observed above
 (q0, #) = (q1, #, L)

The following forms of the tape

 I I #

 q1
 and
 # #

 q1

guide us to moves

 (q1, I) = (q2, #, L)

change of state is essential else other I’s will also be converted to #’s,

 (q1, #) = (halt, #, N)

49

Turing Machine and
Recursive Functions

Observations3: The moves are guided by principle that convert the left-most I to # on
the right side the corresponding right-most I to # on the left-side

 (q2, I) = (q2, I, L)
 (q2, #) = (q3, #, L)
 (q3, I) = (q3, I, L)
 (q3, #) = (q4, #, R)

(We have reached the right-most # on the left of all I’s as shown below)

 q4
If we have configration of the form

 q4
then it must have resulted from initial configuration in which m < n represented by
say

I I # I I I #

 q4

Therefore, we must now enter a state say q7 which skips all I’s on the right and then
halts
Therefore

 (q4, #) = (q7, #, R)
 (q7, I) = (q7, I, R)
 (q7, #) = (halt, #, N)

 Next, we consider (q4, I)
 (q4, I) = (q5, #, R)
(state must be changed otherwise, all I’s will be changed to #’s)

 (q5, I) = (q5, I, R)
 (q5, #) = (q6, #, R)
(the middle # is being crossed while moving from left to right)

 (q6, I) = (q6, I, R)
 (q6, #) = (q0, #, N)
(the left-most # on right side is scanned in q6 to reach q0 so that whole process may be
repeated again.)

Summarizing the above moves the transition table for function is given by

 I #
q0 (q1, #, L)
q1 (q2, #, L) (halt, #,L)
q2 (q2, I, L) (q3, #, L)
q3 (q3, I, L) (q4, #, L)
q4 (q5, #, R) (q7, #, R)

 50

Turing Machine q5 (q5, I, R) (q6, #, R)

q6 (q6, I, R) (q6, # R)
q7 (q7, I, R) (halt, #, N)
Halt - -

Exercise8: By our representation conventions, the initial configuration is as follows

I . . . I # # …

 q0

4434421
sIn '

If n is even, then f (n) = 0 which further is represented by final configuration

 halt

If n is odd, then f(x) = 1 which is represented by f (n) = 1 which is represented by a
final configuration of the form

I #

 halt

The strategy of reaching from initial configuration to a final configuration is that after
scanning even number of I’s we enter state q2 and after scanning odd number of I’s,
we enter state q1 and then take appropriate action, leading to the following (partial)
definition of transition function :
 (q0, #) = (q2, #, L)
 (q2, I) = (q1, #, L)
 (q2, #) = (halt, #, N)
 (q1, I) = (q2, #, L)
 (q1, #) = (q3, #, R)
 (q3, #) = (halt, I, R)

For the transition

 (qi, ak) = (qj, al, m), the sequence of actions is as follows: First al is written in the

current cell so far containing ak. Then movement of tape head is made to left, to right
or ‘no move’ respectively according as the value of m is L, R or N. Finally the state
of the control changes to qj.

The transition function for the above computation is

 # I
q0 (q2, #,L) (q1, #, L)
q1 (q3, #, R) (q2, #, L)
q2 (halt, #, N) (q1, #, L)
q3 (halt, I, R) -

halt - -

The students are advised to make transition diagram of the (partial) function
defined by the above table.

51 Exercise 9: The desired machine SL is given by

Turing Machine and
Recursive Functions

 L#

 #
RLRL

Exercise 10: Hint: The machine CSL obtained by composing the earlier designed two
machines C and SL is the required machine.

Exercise 11: The proposed design is broken up into a number of the following steps:

Step I: is to mark the left end of the tape by writing a non-blank character say d in the
left-most cell after shifting the given string to the Right.
Thus we apply SR which transforms the tape configuration.
with *
to the configuration

And then we write d in the left most cell so that tape configuration becomes
d # #

And the component TM for Step 1 is given by SR L# L d.

Step II: In order to move to the left-most non-blank symbol of the original string,
apply R to reach the # which is to the left of the left-most non-blank symbol.

Step III: The following moves are repeatedly applied:
(i) Apply R to move to the left-most non-blank. The current symbol is read as r and

then replaced by #. Then this r is attempted to be matched with the right-most
non-blank symbol. The right-most non-blank symbol is reached by applying
R#L. Thus total machine component of Step III (i) is given by # R#L.

(ii) At this stage one of the possibilities is that the symbol currently being

scanned is same as r.
In this case the symbol is replaced by # and then the #, if any, to the left of non-
blank part is reached through L#.
Whole process is repeated.
The TM component of the part discussed so far, Step III is of the form

##
LLRR rr

At some stage, either of the following three cases happen.

(a) the tape contains string of #’s only.
(b) only one non-# symbol is left on the tape.
(c) right-most non-# symbol does not match r.

Out of these three cases, in the first two cases, the given string is a palindrome and
hence the tape configuration.

 d #… # Or d # … # r # …
needs to be replaced finally by

 52

Turing Machine # Y #

In the third case (c) above, at some stage the tape may be of the form
d # # # ... # # …………. b # # …. #
 In this case first all non-blanks need to be replaced by blanks and then final Tape
configuration should be

N #

First we discuss the cases when the string is a palindrome and hence we need to
replace the configuration

d # ... # OR d # …# r # …#

(In the configurations Head is scanning # or) by the configuration

y #

In such cases at some stage, the current symbol is # or r, some non-blank symbol .

Let us first consider the case when head scans # (i.e, case of even length palinidrome)
We move to left-most symbol d through

#
L , replace d by # then, move to the Right

to write Y in the cell under the Head and finally move to the Right. Thus the TM
component to handle this part is given by:
 #

#
L #RYR

after R component of the component TM of Stage II.
Next we discuss the case when the initially given string is a palindrome of the form.
a b c b a #
for which, after a number of moves, the following configuration is reached:

d # # # c # # #

Then c is replaced by #. While executing part of the following
component of the TM of Step III

#
RR r

##
LLRR rr

leads to the configuration d # # # # # # # by replacing c by # and moving to the next #
on the right. Next executing L of takes us back to the configurations d

LL r

#, where in the case of even palindromes or for all states except last for odd
palindromes, we expect under the Head at this stage, the previously noted symbol. But
in this case it does not happen, because # is present in stead of the expect symbol c.
Therefore the part is not executed. ## Lr

Therefore, there is an accepting branch # from L. Afterward, actions are similar as in
the case of even palindrome discussed above.

Combining the two cases we get the following component of the TM which
correspond to the two cases of acceptance as Palindrome of the given string:

53

Turing Mach
Recursive Fu ctions

ine and
n

RYR #

#

##

L

LLRR rr

Case (iii) When the given string is not a palindrome and we have already reached a
stage where the corresponding positions do not have the same letter e.g.

###
acccbad

in which after having executed

#

#
LLRR rr

once completely and only upto # R# r
L in the second round we find a ‘c’

(instead of expected ‘b’)
at the stage to the component R R# r

L we add

another arc t r or #
(in addition to the arc when the pair of letters in corresponding positions
match) as shown in the lower right part of the next diagram.

r

Action-to-be defined once a non-palindrome is recognized: Replace all non-blanks by
blanks so that the tape assumes the configuration.

d # .… # #
which finally through a series of actions assumes the form
N #

Coming back to the latest non-accepting configuration, the Head is scanning a non-
blank (in our example ‘c’), we replace it by # and move to the next non-blank (if any)
on the left-side, i.e., apply

#
L . Thus application of

#
L # is repeated as long as there

are non-blanks available on the tape. Also, as all non-blanks are continuous,
therefore, in stead of #

#
L , we may take only # L. As all non-blanks are continuous,

therefore, we reach # only when the configuration is of the form d # #. This
configuration is to be replaced by

N #

The sequence of actions required for the final configuration is

#
L # R N R.

After combining all the above sub-machines, we get

 54

55

Turing Machine Fig. 1.10.7

1.11 FURTHER READINGS

1. H.R. Lewis & C.H.Papadimitriou: Elements of the Theory of computation,
PHI, (1981)

2. J.E. Hopcroft, R.Motwani & J.D.Ullman: Introduction to Automata Theory,
Languages, and Computation (II Ed.) Pearson Education Asia (2001)

3. J.E. Hopcroft and J.D. Ullman: Introduction to Automata Theory, Language,
and Computation, Narosa Publishing House (1987)

4. J.C. Martin: Introduction to Languages and Theory of Computation,
 Tata-Mc Graw-Hill (1997)

	1
	Lecture Notes on Theory of Computation Module 2 - Unit 1 by Dr. SK Rath
	UNIT 1TURING MACHINE(
	Notations
	
	
	
	Case IV: When # is the left-most symbol in the input

	The next-move partial function (is given by
	Then one of the notations is
	
	
	
	Thus if the tape is like

	Definition: A configuration results (or is derived) from another configuration.
	Definition: Computation
	Definition: Turing Decidable Language
	
	
	1.6 OBSERVATIONS

	Remark 1.6.3
	Halt State of TM vs. set of Final States of FA/PDA
	
	
	
	We treat the following configuration

	Translating the above actions in terms of formal moves, we get
	Example 1.7.7

	Case I
	Case II
	Case III
	
	
	
	
	The strategy to get the representation for n m I’

	Remark 1.7.8
	Details of case (iii) are not being provided for the following reasons
	
	
	
	
	Example 1.8.7

	Step III may be summarized as the machine

	Fig.1.10.1
	Fig. 1.10.2
	Fig. 1.10.3
	Fig. 1.10.4
	Fig. 1.10.6

	Outline of the functioning of the proposed TM
	The Computation of the TM on input aab

