
 
BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, 

ODISHA 

 
Lecture Notes  

On 
 
 
 
 
 

Prepared by, 

Dr. Subhendu Kumar Rath,  

BPUT, Odisha. 

THEORY OF COMPUTATION 
MODULE - 2 

UNIT - 2 
 



 Turing Machine-
Miscellany 

  

UNIT 2 TURING MACHINE – MISCELLANY  

Structure  Page Nos. 

2.0 Introduction  55  
2.1 Objectives 56  
2.2 Extensions-cum-Equivalents of Turing Machine 56  
2.3 Universal Turing Machine (UTM) 68  
2.4 Languages Accepted/Decided by TM 72 
2.5 The Diagonal Language and the Universal Language 78  
2.6 Chomsky Hierarchy 84  
2.7 Summary 88  
2.8 Solutions Answers 88  
2.9    Further Readings 91  
 

2.0 INTRODUCTION  

Hofstadter**

. . . .  
Tortoise:  Oh, how clever, I 
wonder why I never thought of 
that myself.  Now tell me: is the 
following sentence self-
referential?   “Is Composed of 
Five words. ” is Composed of 
Five Words. 
 
Achilles:  Hmm… I can’t quite 
tell.  The sentence which you 
just gave is not really about 
itself, but rather about the phrase 
“is composed of five words”.  
Though, of course, that phrase is 
part of the sentence 
Tortoise:  So the sentence refers 
to some part of itself ― so what?
Achilles:  Well, wouldn’t that 
qualify as self-reference, too? 
Tortoise:  In my opinion, that is 
still a far cry from true self-
reference.  But don’t worry too 
much about these tricky matters.  
You’ll have ample time to think 
about them in the future. 

. . . . 

For the time being, let us concentrate on the nitty-gritty of other, possibly    
easier, ways of designing TMs and other related issues, and leave the 
issue of self reference for some later units. 
 
The essence of the discipline of Theory of Computation is to characterize the 
phenomenon of computation in terms of formal/mathematical concepts like set, 
relation, function, etc.  For this purpose, the discipline incorporates study of a number 
of approaches to, and models and principles of,∗ computation.  Three approaches to 
computation included in the curriculum are: 

(i) Automata  
(ii) grammatical   and  
(iii) recursive function.  
 
Various approaches to computation are equivalent in the sense that to each model of 
computation obtained through one approach, there is a (computationally) equivalent 
model of computation through another approach.  
 
We initiated our studies with Finite Automata and Regular Grammars and established 
equivalence of these models. However, these models are found inadequate to capture 
the notion of computation, in the sense that even a simple language like {xn yn: n∈N} 
cannot be captured/computed by either of these models.  Then, we studied more 
powerful models viz. Pushdown Automata and Context-Free Grammars and 
established equivalence between the models.  Again, these models are found 
inadequate. 
 
In the previous unit, we introduced still more powerful ,model of computation viz  
Turing Machine (TM) and mentioned the important fact that that TM model is 
conjectured to be the ultimate (formal) model of computation.    
 
In this unit, we discuss a number of important issues about TM.  First of all, we 
mention a number of extensions of the standard TM introduced in the previous unit.  
These extensions, though apparently are expected to provide more powerful models, 
yet give only models, each one of which is equivalent to standard TM.  The fact of 
equivalence of various extensions of TM support the conjecture mentioned above. 
The proofs of equivalences are beyond the scope of the course. 
Next, we discuss Universal Turing Machine (UTM), an equivalent of general-
purpose computer.  The significance of the study of UTM lies in the facts: 

                                                 
 ** Godel, Escher, Bach: An Eternal Golden Braid By Douglas R. Hofstadter, Penguin Books (1979)  
 

 
55



 
Turing Machine and 
Recursive Functions 

(i) A single General Purpose Computer can be used to solve any problem, if at all  
 the problem is solvable by some computational method.  
(ii) In order to solve a problem by TM model, unlike general purpose computer,  
 we are required to construct a new TM for each new problem. 
 
Thus, a single UTM can be used to solve by TM models any solvable problem.  
Next, we introduce languages associated with TM and discuss briefly properties of 
these languages.  
 
Though, some of the books that have appeared in the recent past in the discipline, do 
not talk of Chomsky* Hierarchy of languages; we, for the sake of exhibiting 
complete parallel between the automata and grammar approaches, just mention 
Chomsky Hierarchy and define grammar models of various types of languages 
discussed under Chomsky Hierarchy and mention equivalences of these languages to 
appropriate automata  

   

2.1 OBJECTIVES 

After going through this unit, you will be able: 

• to discuss various extensions of standard Turing Machine; 
• to tell that each of these extensions of TM, is just computationally equivalent  
• and, is not properly more powerful than standard TM; 
• to describe the structure of Universal Turing Machine (UTM); 
• to explain how UTM can be used as a general purpose computer; 
• to state and prove some of the properties of Turing Acceptable and Turing  
• Decidable languages; and  
• to define phrase-structure grammar and to tell that phrase-structure grammar  
• model is equivalent to TM model. 
 

2.2 EXTENSIONS-CUM-EQUIVALENTS OF  
 TURING MACHINE 

The Turing Machine, as defined in the previous unit, will be referred to as standard 
Turing Machine. In the standard Turing Machine, the tape is semi-infinite and is 
bounded on the left-end, however, the tape is unbounded on the right side. In this 
section we consider some extensions of the standard TM. 
The extensions of Turing Machine considered are: 
 
(i)  The tape may be allowed to be infinite in both the directions 
 
(ii)  There may be more than one Head scanning various cells of the tape. Two or 

more Heads may simultaneously read the same cell or may attempt to write in 
the same cell. 

 
(iii) There may be several Tapes instead of one only, each Tape having its own 

independent Head. 
 
(iv) The Tape may be k-dimensional, k ≥ 2, instead of only one-dimensional. 
 
(v) For a given pair of current state and symbol under the Head, in stead of at most  
 one possible move, there may be any finite, possibly zero,  number,  of next  
 moves (This model is called Non-Deterministic Turing Machine.). 
 
Remark 2.2.1  

56 



 Turing Machine-
Miscellany 

 
 
In all the above-mentioned extensions, it is invariably assumed that only finitely many 
cells contain non-blank symbols. All other cells are blanks. 
 
Remark 2.2.2  
 
Each of the above-mentioned extensions, being a generalization of the standard 
Turing Machine, may appear to yield a strictly more powerful model of computation 
through automata approach, yet it has been proved that each of these models is just 
equivalent to and not strictly more powerful than the standard TM model of 
computation. 
 
It has been already mentioned in one of the previous units that it is conjectured that 
(standard) TM is ultimate model of computation. 
   
Remark 2.2.3 
 
Like the standard TM, each of the extensions of TM enumerated above, is formally 
defined as, or some variation of, a sextuple of the form  (Q, Σ, ⎡, δ, q0, h), where Q, 
Σ, ⎡, q0 and h stand, as in standard TM, for respectively set of states, set of input 
symbols, set of Tape symbols, initial state and halt state. 
 
However, the extensions are distinguished from each other and from the 
standard TM through different definitions of next-move relation δ and of 
configrations for each of the extension.   Therefore, in the following, most of the 
time, we discuss the extensions only in terms of definitions of δ and of 
configration. 
 
2.2.1 Extension (i):  
 
Two-way (infinite tape) Turing Machine 

Like standard TM, in this case also, the next-move is given by δ as a partial function 
from Q × ⎡ to Q ×   ⎡ × {L, R, N}   
The following three points need to be noted in respect of configrations of Two-way 
Turing Machine: 
 
(i)   Configuration/Instantaneous Description: 
In standard TM, if there are a number of left-most positions which contain blanks, 
then those are included in the configuration, e.g.,  if the one-way configuration Tape 
is of the form  
 
# # a b # c d e f # #..# 
                  ↑ 

    q2     
then the configuration in the standard TM is written as: 
(q2,  #  #  a  b  # c  d  e f),  
where we neglect all the continuous sequences of right-hand blanks. 
 
However, in the Two-way infinite Tape TM, both left-hand and right-hand parts of 
the tape are symmetrical in the sense that there is an infinite continuous sequence of 
blanks on each of the right-hand and left-hand of the sequence of non-blanks. 
Therefore, in the case of two-way infinite Tape, if the above string is on the tape then 
it will be in the form 

#... ... # f e  d c # b a ## .... # ... # ...#
2q

↑
 

and then, the configuration for Two-way infinite tape TM will be slightly 
different as given below: 

 
57



 
Turing Machine and 
Recursive Functions 

(q2,   a  b  #  c  d  e f),  
Note the #’s  to the left of a are missing here. 
 
(ii)   No Hanging (or No ceasing of operations without Halting) 
In this case, as there is no left end of the tape, therefore, there is no possibility of 
jumping off the left-end of the Tape. Thus, if the machine has the configuration   
(q, a d ...) and δ (q, a) = (p, b, L), then new configuration is (p, # b d ...) instead of the 
hanging configuration. 
 
(iii)  The empty Tape configuration: When at some point of time all the cells of 
the Tape are #’s and the state is say q, then the configuration in Two-way Tape may 
be denoted as: 
(q, #) 
 
where only the current cell containing # is shown in the configuration. 
Rest of the notations and definitions given in context of standard TM will be used for 
two-way Turing Machine, including the definition of the next-move (partial) function 
δ. 
 
Despite the fact that, it is possible in the new model of computer to move left as far as 
required; as mentioned earlier, the model does not provide any additional 
computational capability. 
 
2.2.2 Extension (ii):   
Turing Machine having R heads, k ≥ 2, with only oneTape 

In order to simplify the discussion, we assume that there are only two Heads on the 
Tape. 
 
The Tape is assumed to be one-way infinite. We explain the involved concepts with 
the help of an example. 
 
Let the contents of the Tape and the position of the two Heads, viz H1 and H2,  be as 
given below: 

.... # # f  e d  # c  b a ## 
12 HH

↑↑
                          …… (*) 

Further, let the state of the TM be q. 
 
Then one method of defining the configuration of two-Head one-way Turing 
machine is  
(the state, the Tape description as if H1 is the only Head of TM, the Tape description 
as if  H2 is the only Head of TM). 
 
Therefore, the configuration in the case of (*) given above will be  
 
(q, #  # a b c # d e f, # # a b c # d e f) 
 
The Move function of the Two-Head One-way Turing Machine may be defined 
as 
 δ (state, symbol under Head 1, Symbol under Head 2) 

= (New State, (S1, M1), (S2, M2)) 

Where Si is the symbol to be written in the cell under Hi, the ith Head and Mi denotes 
the movement of Hi, where the movement may be L, R or N and further L denotes 
movement to the left, R denotes movement to the right of the current cell and N 
denotes ‘no movement of the Head’. 
 

58 



 Turing Machine-
Miscellany 

 
Two Special cases of the δ function defined above, need to be considered: 
 
(i)  What should be written in the current cell when both Heads are scanning the 

same cell at a particular time and the next moves (S1, M1), (S2, M2) for the two 
Heads, are such that S1 ≠ S2  (i.e. symbol to be written in current cell by H1 ≠  
symbol to be written in current cell by H2)? 

 In such a situation, a general rule may be defined, say, as ‘whatever is to be  
 done by H1 will take precedence over whatever is to be done by H2’. 
 
(ii)  The Hanging configuration: For two-Head One-way Tape, a configuration  
 shall be called  
 Hanging if 

δ (q, symbol under H1, symbol under H2) 
= (p, (S1, M1), (S2, M2)) 
is such that either 
 
(a)  Symbol under H1 is in the left-most cell and M1 is L, i.e., movement of 

H1 is to be to the left,    OR 
 
(b)    Symbol under H2 is in the left-most cell and M2 is L, i.e., movement of 

H2 is to be to the left. 
 
Other concepts and issues in respect of Two-Head One-way Tape may be handled on 
the similar lines. The above discussion can be further be extended easily to the case 
when number of Heads is more than two. 
Again, as mentioned earlier, the power of the TM is not enhanced by the use of extra 
Heads.  
 
2.2.3 Extension (iii)  
 
Multi-Tape Turing Machine:  
In stead of one Tape, we may have more than one tapes, each tape having its own 
independent Head. To begin with, we may take each of the tape as one-way infinite 
tape, bounded on the left. 
 
Again to facilitate the discussion, we initially consider the case of only two tapes: 
 
Configuration/Instantaneous Description:  
 
We explain the concept of configuration for Turing Machine with two Tapes with an 
example.  Let the contents of the tapes and positions of the Heads be as follows: 
 

  
Tape 1: # # a  b  c  d  e  # #  

                                     ↑                                                     
Tape 2: 

e  f  # g  d  f  # # #         …. 
       ↑ 
and the state of the Turing Machine be q. 
Then the configuration may be denoted by  
(q, (# # a  b c d e), (e f # g d f)) ) 
(inner pairs of parentheses are used only to enhance readability, not required 
otherwise) 
The next Move function δ may be defined as  
 
δ ((q, T1, T2)) 
= (p, (S1, M1), (S2, M2)  

 
59



 
Turing Machine and 
Recursive Functions 

where q denotes the current state, Ti denotes the symbol of the ith tape currently 
being scanned by its Head. The symbol p denotes the next state; Si denotes the 
symbol to be written in the current cell of the ith Tape in place of Ti.  Mi  ∈{L, R, N} 
denotes the movement of the Head on ith Tape.   
 
Hanging Configuration in the case of Two-Tape, each Tape being one-way 
infinite  
 
The TM will be said to be in Hanging Configuration if there is a next move given by 
δ (q, T1, T2)  =  (p, (S1, M1), (S2, M2)), 
where p, q, Ti, Si, Mi, are the notations explained above, with either 
 
(i)  T1 being in the left-most cell of Tape l and M1 being ‘Movement to Left’,   or 
(ii)  T2 being  is in the left-most cell of Tape 2 and M2 being  ‘Movement to Left’.  
 
The discussion can be further extended on the similar lines to k Tape Turing 
Machine, 
 where k>2. 
 
The concept of k-Tape, k ≥ 2, with each Tape being semi-infinite, can be further 
extended when the tapes are allowed to be Two-way infinite. The notions for 
configuration and Move function for such machines can be easily defined.  
 
A very important application of the 3-tape Turing Machine model, which we are 
going to discuss in Section 2.3, is in the design of universal Turing Machine,             
a sort of a general-purpose computer. 
 
The design of k-tape Turing Machines for some of the functions like copying, 
reversing, for verifying whether a string is a palindrome or not etc,  can be much 
more easily carried out as compared to the design of the corresponding standard 
Turing Machines. 
 
Example: 2.2.3.1 
 
Construct a 2-Tape Turing Machine, which returns  # ω ω # for given input    # ω #. 
 
Solution: Let the input be placed on Tape 1 and Tape 2 may contain all blanks, with 
the Head of Tape 2 being on the left-most # so that the initial configration is as 
follows: 
 

Tape 1:   # w1  …. wk    #     #  
                                                                    ↑ 

         q0
 
  Tape 2:   #  .. ………………………………………. 

      ↑ 
                               q0
 
Step1: Move the Head of Tape 1 containing the input towards the left most cell 
through the following moves. 
 
 
      δ (qo , #, #) = (q1, (#,L), (#, N)) 

δ (q1, #   , #) = (q1, ( # ,L), (#, N)) 
δ (q1 , #, #) = (q2, (#,R), (#, R)) 

where  # denotes the same non-blank symbol throughout an equation. 

60 



 Turing Machine-
Miscellany 

 
After these moves, the configuration is as follows: 

Tape 1:  
                         ↑ 
                         q2
Tape 2:  

         ↑ 
                           ↑ 

# w1 w2 ------------- wk# ----------------------

#  # # -------- # 

                           q2                         

where wi ≠  # for i=1,2,-------, k 
 
 
Step 2: Next, we copy the contents of Tape 1 to Tape 2 through 
 
δ (q2, #  , #) = (q2 , ( # , R), ( # , R)), 
where  # denotes the same non-blank symbol throughout an equation. 
In other words through these k moves, non-blank contents of Tape 1 are copied in the 
corresponding cells of tape 2. 
 
After k times executions of the above move, the configuration becomes 

Tape 1:  

                         ↑ 

# w1 w2 ------------- wk    #   

                                                                                    q2     
Tape  2:  

            ↑ 

# w1 w2 ------------- wk  #  

                                                                                   q2  

Step 3: At this stage we intend to move the Head of Tape 2 to the left-most # 
without moving the Head of Tape 1 

 
∴ we introduce the moves: 

       δ (q2,  #,  #)    =    δ (q3, (#, N), (#, L)) 
and 
      δ (q3,  #,  # )    =    (q3, (#, N) ( # , L)) 
At the end of k moves the configration becomes 
 
Tape 1: # w1 w2       wk          #   

                         ↑ 
                                                                                           q3     
   
Tape 2: # w1     wk         #   

 ↑ 
                                                      q3        

At this stage, when Head of Tape 2 is also scanning a #, we may enter a new state q4, 
in which Head of Tape 1 does not move but Head of Tape 2 moves right so that 
  
δ (q3, #, #)    =    (q4, (#, N), (#, R))                                                                        …. 
(*) 
 
In state q4, each non-# symbol of Tape 2 is copied in the current cell of Tape 1, and 
then content of the current cell of Tape 2 is converted to # and both Heads move to 
the Right i.e, 
 δ(q4, #, # )   = (q4, ( # , R), (#, R)) 

Step 4: Finally the configuration with state q4 is  

 
61



 
Turing Machine and 
Recursive Functions 

Tape 1 
# w1……..wk w1………..wk    # 

                         ↑ 
                                                                                                    q4  
Tape 2 

#      # 
                                                 ↑ 

                                                               q4  
 ∴  δ (q4,  #,  #)    =    (Halt,  #,  #) 
At this stage Tape 1 contains the required output. 

Ex.1) Construct Two-Tape Turing Machines for each of the following: 

(i) Convert the input # w # into # w # w # 
(ii) Convert the input # w # into # w wR  # 
(iii) Convert the input # w # into # w # wR # 
 
where if w = w1w2------wk-1 wk 
then wR= wk wk-1--------w2 w1 

 

 
Remark 2.2.3.2:  
 
Again, it has been proved that the power of the standard Turning Machine is the 
same as that of a Turing Machine with any finite number of Tapes. 
 
Remark 2.2.3.3:   
 
The k-Tape version of a Turing Machine, with each tape being only one-way can be 
further extended to a k Tape Turing Machine with each Tape being Two way infinite. 
It may again be noted that even with this extension the computing power is the same 
as is achievable with standard TM. 
Next, let us consider 
 
2.2.4 Extension (iv):  

k-Dimensional Turing Machine: 
 
Again to facilitate the understanding of the basic ideas involved, let us discuss 
initially only Two–Dimensional Turing Machine. Then these ideas can be easily 
generalized to  
k–dimensional case, where k >2. 

In the case of two-dimensional tape as shown below, we assume that the tape is 
bounded on the left and the bottom. 
 
 
 
 

 
 

4 
 

3 
      
 2  
  
 1 

62 



 Turing Machine-
Miscellany 

 
  
 0 

         0             1           2             3  
 

Each cell is given an address say (i1, i2) where i1 is the row-number of the cell and i2 is 
the column number of the cell. For example, the shaded cell in the above diagram has 
address (2,3). 

Introductory Remarks in context of the Instantaneous Description (ID) or 
configuration: 

A configuration of a two-dimensional TM at a particular time may be described in 
terms of finitely many of the triplets of the form, (i1, i2, c) where for each such triplet, 
(i1, i2) is the address of a cell and c denotes the contents of the cell. Only these cells 
are included in an ID, for which c, the contents, are non-blank symbols. 

In the configuration or ID, order of the cells which are included in an ID, Row-
Major Ordering is to be followed,  i.e., first all the elements in the row with least 
index are included in the ID, followed by the elements of the  row with next least 
index and so on. Within cells of each row, the cell with  non-# contents and having 
least column number is included first followed by the non-# cell with next least 
column number and so on. 
  
For example, if we have the following triplets in the ID 
(2,5, c), (0,2,d), (4,3, f), (3,5,g), (0,3,h), 
then the order of the triplets in the ID will be 
(0,2,d), (0,3,h), (2,5,c), (3,5,g), (4,3,f) 
 
After these introductory remarks, we define configuration and the move 
function δ etc. 
Configuration:  Let q ∈  Q, ck ∈ Γ ~ {#}. 
 
i.e. ck is a non-blank Tape symbol.  
 
Then a configuration at a particular instant is denoted by 
(q, (H1, H2) (i1, i2, ci1, i2), (j1,j2,cj1, j2),   …..,    (k1, k2, ck1, k2) ………….)          ), 
where each of ci1,i2 , cj1,j2, …….. is non-blank and these are the only non-blanks on the 
tape. 
 
Also, (H1,H2) denotes the location of the cell currently being scanned, i.e. the cell 
under the Head. 
 
Further, (i1, i2) precedes (j1,j2) and (j1,j2) precedes (k1, k2) in the row- major ordering, 
if  
i1 ≤  j1 ≤  k1. 
and if  i1 = j1, then i2 < j2  
or if  j1 =  k1, then j2 < k2  etc. 
Example 2.2.4.1:  
 
Suppose at a particular instant the contents of a Two-Dimensional Tape are as given 
below and the state at that instant is q3 and the cell being scanned is (3,2). 
 

             

           5 f    

              4 b   

 
63



 
Turing Machine and 
Recursive Functions 

          3  

          2 d  

          1 a h   

      
             0 

  0      1    2    3     4  
Then the configuration / ID is given by  
(q3, (3,2), ( 1,1,a), (1,4, h), (2,3,d), (4,3,b), (5,4,f)) 
 
The Next-Move function δ: maps an element of Q x Γ to Qx  x { L, R, U, D, N}, 
where L, R, U and D denote respectively ‘ Move Left’, ‘Move Right’, ‘Move Up’ and 
‘Move Down’,  and ‘N’ denotes ‘No Move’. For example,  

Γ

δ (q2, c) = (q3 ,d, R) 
 
means the contents viz c of the cell (i1, i2) currently being scanned, are replaced by d 
and the Head moves to the cell with address (i1, i2 +1) if the address of the scanned 
cell was (i1 i2).  
 
The following cases need special attention: 
The cases are discussed only in respect of inclusion or exclusion of triplets and not 
about movement of the Head. 
 
Let δ (q2, c) = (d, n).   
 
Case (i) if c = # then (i1, i2, #) does not occur among the triplets of the configuration 
before the move. However if d ≠ # then (i1, i2, d) will be added to the set of triplets in 
the configuration.  
 
Case (ii) if c # but d= # then (i≠ 1, i2, c) occurs as a triplet in the configuration before 
the move, but this triplet is dropped from the new configuration arising out of  
δ (q2 c) = (d, n).   
 
Case (iii) When c=d = # 
In this case, there is no change in the set of triplets in the configuration  
δ (q2 c) = (d, n).   
 
Case (iv)  When c ≠ # ,and d ≠ #, then the triplets (ί1,ί2,d) replaces the triplet (ί1,ί2,c)  
in the set of all triplets in the previous configuration to get the new configuration 
 δ (q2 c) = (d, n).   
 
Again, it has been proved that the computing power of the above-mentioned model 
of TM remains the same as that of the standard TM. 
 
Next, we come to the most important extension  of the TM, viz  

2.2.5 Extension v:  

Non-Deterministic Turing Machine. (NDTM)  

An NDTM is like the standard TM with the difference as described below. In 
Standard TM, to each pair of the current state (except the halt state) and the symbol 
being scanned, there is a unique triplet comprising of the next state, unique action in 
terms of writing a symbol in the cell being scanned and the  motion, if any, to the 
right or left. However, in the case NDTM, to each pair (q, s) with q as  current state 
and s as symbol being scanned, there may be a finite set of the triplets { (qi, si, mi) : I 
=1,2,…….} of possible next moves. This set of triplets may be empty, i.e. for some 
particular (q,s) the TM may not have any next move. Or alternatively the set {(qi, si, 
mi)} may have more than one triplet, meaning thereby that the NDTM in the state q 

64 



 Turing Machine-
Miscellany 

 
and scanning symbols s, has the alternatives for next move to choose from the set  
{(qi, si, mi)} of next moves. 
 
It can be easily seen that standard TM is a special case of the NDTM in which for 
each (q,s) the set {(qi, si, }of next moves is a singleton set or empty. 
 
In order to define formally the concept of Non-Deterministic TM (NDTM), and 
a configuration in NDTM etc, we assume that the tape is one-way infinite. 
 
For the extensions of the standard TM, discussed so far, we did not state the full 
formal definition of each of the extension.  We only discussed the definition only 
relative to the standard TM.  Mainly we discussed configurations and partial move 
function δ for each of the extensions.  However, in view of the significant though 
small, difference in the behaviour of an NDTMs, we provide below full formal 
definition of NDTM. 
 
Remark 2.2.5.1:  
 
An important point about the definition of NDTM needs to the highlighted.  By the 
definition of δ which maps an element of (q, x) of Q x ⎡ to a set {(qi, xi, Mi) } means 
that each element (q, x) of Q x  has the potential of leading to more than one 
configurations.  In other words, there are various possible routes to a final 
configuration from one configuration.  However, during one computation only 
one of these possible values (q

Γ

i, xi, Mi) will be associated with (q, x) through δ.   But 
we can not tell in advance which one out of the ordered triples from the set {(qi, 
xi, Mi)} 
 
This is why the adjective Non-Deterministic is used for this version of the T.M. 
 
Remark 2.2.5.2:  
 
The set {(qi, xi, Mi)} associated with (q, x) under δ, may be empty.  This means there 
is no possible next move for (q, x), a situation that occurred even in the case of 
standard TM and other versions discussed so far.  This is why δ was called a partial 
function from Q x ⎡ to Q x⎡x{L,R,N). 
 
Remark 2.2.5.3: 
 
In the standard TM and the versions discussed before NDTM, we allowed δ as a 
partial function to Q x ⎡ x {L, R, N}.  In other words, if a value under δ exists  
for (q, x) then the value has to be unique, i.e, can be determined.  Therefore, the 
earlier versions are prefixed with the   adjective Deterministic.  The Non- 
Deterministic form of each of the earlier versions can be obtained by making suitable 
modifications in the corresponding definitions of δ etc on the lines of modifications 
suggested in the definition of NDTM from standard TM.   
 
Remark 2.2.5.4:  
 
Proper non-determinism means that at some stage, there are at least two next possible 
moves. Now, if we are engage two different persons or machines to work out further 
possible moves according to each of these two moves, the two can work independent 
of each other.  This means Non-Determination allows parallel computations. This 
characteristic of Non-Determinism, also allows is further computations even if some 
of the sequences of moves may be locked as there may not be any next moves at 
some stages.  
 
Definition:  An Non-Deterministic Turing Machine  
is a sextuple (Q,  Σ, δ, q,Γ o, h) where  
Q: Set of States 

 
65



 
Turing Machine and 
Recursive Functions 

Σ: Set of input symbols 
Γ : Set of tape symbols 
qo: The initial state 
h: The halt state                      and 
 
δ: Q x  Power set of (Q x Γ Γ x {L, R, N}) 
The concept of a configuration is same as in the case of standard TM. But the 

concept of ‘yields in one step’ denoted by  
m

|  , has different meaning. Here one 

configuration may yield more than one configurations. 
 
We explain these ideas through a suitable example, which also demonstrates the 
advantage of the Non- Deterministic Turing Machine over the standard Turing 
Machine.  The advantage is in respect of the relative ease of construction of 
NDTM. 
 
Remarks 2.2.5.5 
 
Before coming to the example, showing advantage of an NDTM in solving some 
problems; we need to understand properly the concept of acceptance of a language 
by an NDTM. First of all, let us recall below what is meant by acceptance of a 
language L by a standard TM M. 
 
A language L is accepted by a TM M if each string α ∈ L, is acceptable by M. 
Further a string α is acceptable M, if staring in the initial state q0 of M, with α as 
input on the tape of M, if we are able to reach halt state in a finite number of moves, 
i.e, if  
α= a1 a2 … ak ∈ L for aii ∈ Σ, the set of input symbols of M, then  
(q0, a1 a2 … ak) |– * ( h, β ) 
 
Where β  is a string of tape symbol and tape head may be on any cell of the tape.  A 
characteristic feature of the standard TM, in this case, is that if there is to be a 
sequence of moves from (q0, α)to a final state, than that sequence might the unique.  
However in the case of Non-Deterministic machines, the halt state may be reached 
through any one of various permissible sequences of moves.  Therefore in this 
version a string α over the set of input symbols of an NDTM is acceptable by an 
NDTM M, if by at least one but by any one of the sequences of moves halt state is 
reached from (q0, α).  Now we discuss the example showing advantage of NDTM 
over standard TM. 
 
Example 2.2.5.6:  
 
Construct an NDTM which accepts the language { an bm: n ≥ 1, m ≥ 1}, i.e., the 
language of all strings over {a,b}, in which there is at least one a and one b and 
all a’s precede all b’s. 
 
Solution: The diagrammatic representation of the required NDTM is as given 
below: 

In the proposed NDTM, as the motion of the head is always to the Right except in the 
Halt state. Therefore, R is not mentioned in the labels in the diagram below: 
 

a/a 
 

    
 a/a b/b 

              >      

qo q1

 h 
66 



 Turing Machine-
Miscellany 

 
 
 b/b 
 

 

where the label i/j on an arc denotes that if symbol in the current cell is i then 
contents of the cell are to be replaced by j. 
Formally the proposed NDTM may be defined as  
M={ {q0, q1, h}, {a, b}, { a, b, #}, δ, qo, h } 
Where δ  is defined as follows: 
δ (q0, a)= {( q0, a, R), (q1, a, R)} 
δ  (q0, b)= empty 
δ  (q1, a)= empty 
δ (q1, b)= {(q1, b, R), (h, b, N)} 
If the machine has no next move, then it halts without accepting the string. 
 
Remarks 2.2.5.7:  
 
Though we have already mentioned earlier on a number occasions, yet, in view 
of the significance of non-determinism in designing TMs comparatively more 
easily, we again bring to notice that in the state q0 on scanning symbol a, the TM 
may move in any one of the two next possible states viz to q0 after moving the 
head to the right or to q1 (after moving the head to the right).  And, if the TM is 
implemented as a parallel computer then the computer can pursume 
independently both branches initiated by (q0,a,R) and (q1,a,R) 
 
Next, we consider another important variation:  Final state Turing Machine Instead of 
the halt state, TM may have a set F of states designated as final states.  
 
2.2.6 Final State Version of the Standard TM 

On the lines of the definitions of finite Automata and Pushdown Automata, we can 
define (standard) TM also in terms of F, a set of final states, instead of h, the halt 
state. The only major differences between the TM with F and the TM with h are: 
 
(i) The TM, while being in a final state, can still have further moves.  But in Halt- 

state version the TM can not move after reaching the Halt state.  In the case of 
Final state version a TM stops further operations only when there is no next 
move at a time when the machine is scanning a symbol in some state.  If there 
is no move and the state of TM is a final state, then the string on the tape is 
accepted.  However, if there is no move and the state of TM is not in F, then 
TM halts without accepting the string on the Tape. 
 

(ii) If when the TM is in a final state then the string formed by the contents of the  
whole tape (excluding the continuous infinite sequences(s) of #’s), is 
acceptable, irrespective of the position of the Head on the tape.  The situation 
is similar to what we have in case of Halt state version of TM 
 

It can be shown that Final State version of TM is (computationally) equivalent to Halt 
State Version of TM 
 
With these comments, we give below a formal definition of the Final State version 
of TM 
 
Definition: Turing machine (Final State Version) 
 
A      Turing Machine is a sextuple ( Q, ∑, ⎡, δ, q0, F) 
 
where  the various involved symbols denote various entities as follows: 

 
67



 
Turing Machine and 
Recursive Functions 

Q  :  The set of states 
Σ : The set of input symbols 
⎡ : The set of Tape symbols  
q0 : The initial state 
F : The set of finial states  and 
δ :   is a partial function from Qx ⎡ to Q x ⎡ x { L, R, N }, with L, R and N  
 respectively denoting move to the Left,  move to the Right and No  
 move of the Head 
   
The standard TM and all the extensions of standard TM mentioned above can 
also be defined in terms of Final State version of the Standard TM on the lines of 
the above definition. 
 
Ex.2)     Construct an NDTM to accept the language 
  {an bm   :  n ≥1,      m ≥ 0} 
 

 
 

2.3 UNIVERSAL TURING MACHINE (UTM) 

We know the general-purpose computer has the property that the same computer 
system is used to solve all sorts of problems from different domains of human 
experience, provided, of course, the problem under consideration is (algorithmically) 
solvable. 
However, from the discussion of Turing machines so far, it is observed that we have 
constructed  a new Turing Machine for  each new problem to be solved. 
On closer examination of the general-purpose computer, we find that the capability 
of the computer in respect of solving any problem, is mainly based on the fact that 
the program i.e., the description of the sequence of steps (to be executed by the 
executing component of the computer) in some coded form alongwith the required 
data, can be stored in the memory of the computer. Later, the control unit of the 
computer reads the codes for the steps, one step at a time in some order, decodes the 
code which is read and the concerned executing unit is activated  to execute the 
corresponding step. This process of reading of the code for a step, decoding the code 
and executing is repeated till the code for final result is delivered to the memory of 
the computer. 
By following some similar method, even we can construct a (single) Turing 
Machine, which can solve all sorts of solvable problems. Such a Turing Machine 
is called a Universal Turing Machine (UTM). In order to construct a UTM, let us 
make the following observations: 
Observation I:  A Turing Machine M designed to solve a particular problem P, 
consists, apart from the description of the set of possible states and the set of possible 
inputs etc, of mainly the description of the process in some coded form of a sequence 
of steps required to solve the problem in the form of the move-function δ.  Thus to 
solve the problem P, using Universal Turing Machine, the process part involving δ  
of the Turing Machine M, and the inputs, are expressed in the code (i.e. language) of 
the Universal Turing Machine. This code of the process (for solving the problem) 
along with the code of the input, is stored in the memory (i.e. , the Tape) of the UTM. 
And just on the lines of the control unit of a general-purpose computer, the control 
unit of UTM, reads the codes for steps, one step at a time, decodes and executes the 
code for each step, until the code for the final result is stored on the Tape of the 
UTM. 
 
Observation (II):    A Turing Machine M designed to solve a particular problem P, 

can essentially be specified by 
 
(i) The initial state say q0M of the Turing Machine M 
(ii) The next-move function δm of M, which can be described by the rules of the   
 form: if the current state of TM M is qi and contents of cell being scanned  

68 



 Turing Machine-
Miscellany 

 
 are aj then the next state of M is qk , the symbol to be written in the current  
 cell is al  and move mf of the Tape Head may be :To-Left, To-Right or 
None. 
 
Thus, each of these rules for a particular TM M can be specified by quintuples of the 
form (qi, aj, qk, al, mf). And hence the next-move function δm  for machine M is 
completely specified by the set.   
{( qi, aj, qk, al, mf) : qi, qj ∈QM; aj al, ∈  Γ M;  mF ∈  { To-Left, To-Right, None} } 
 
Process part of the TM which is defined by the set of all moves is given by the 
above set. 
 
 Observation 3:  Next the question that arises in context of the construction of 
Universal Turing Machine, is about the number of distinct states in UTM and number 
of distinct inputs/Tape symbols required in the UTM, so that it can solve any 
solvable problem. 
 
As UTM should be able to simulate each Turing Machine, therefore, it may 
appear that number of distinct states and number of distinct Tape Symbols in the 
UTM, should be at least as much as is possible  in any TM, because UTM may be 
required to accomplish the task of (i.e. to simulate) any TM. However, by proper 
coding techniques we may use only two symbols to represent set of symbols.  This will 
be shown to be true in a short while. Of Course, if there are enough symbols say for 
states, then the same symbols may be used for different Turing Machines, if required, 
just by renaming the states for different TMs.  
Though, for each TM, the number of states and the number of Tape Symbols, each is 
finite for each TM, yet there is no upper bound on each of these numbers. 
 
Therefore, we assume each of the set of states, 
Q ∞ = {q0, q1, q2…….} 
 and the set of Tape Symbols is 
⎡∞ = {a1,a2,a3………} 
 is countably infinite 
The Head-Move set M of the moves of head of course, has only three elements viz, 
i.e., 
Hmv = {L, R, N} 
Where L denotes ‘Move-Left’, R denotes ‘Move-Right’ and ‘N’ denotes ‘No Move 
of the Head’ 
 
Observation (IV):   

Each of the sets Q∞  and ⎡∞ involves infinitely many symbols.  However  we cannot 
produce infinitely many distinct symbols required for in the above mentioned entities, 
viz Q∞ and ⎡∞.  But, we can devise a mechanism to represent these infinite number of 
distinct entities.  
 
For this purpose, the alphabet set of {0,1} of two elements is used to represent all 
these entities, where sequences of repeated 0’s denote various elements of Q∞, ⎡∞  
and Hmv . The symbol 1 is used  as a separator. Sequences of 1’s of different 
lengths, are used to separate different coded elements. 
 
We will explain these ideas with suitable examples. First, we consider a coding 
scheme  λ for θ∞, ⎡∞   and Hmv in terms of the alphabet{0,1}, as follows: 
λ (qi)= 0i+1  i = 0, 1, 2,…….. 
(for example λ (q0 ) = 0, λ (q3 ) = 0000, to be denoted by 04 etc) 
λ  (aj)= 0j   for j = 1, 2, 3……. 
 ( for example  λ (a2) = 00, to be denoted by 02; λ(a4) = 0000, to be denoted by 04

Also, λ  (L)= 0, λ  (R)= 00, (or 02) and λ  (N) = 000 (or 03) 
 

 
69



 
Turing Machine and 
Recursive Functions 

Note that the same sequence of 0’s may represent a state, an input symbol or a move, 
e.g, 000 may represent the state q2, the input symbol a3 and N of moves.  However, 
there is no  possibility of confusion or error, because, the strings of 0’s are placed in 
relatively different positions in the representation of a move to denote a state, an 
input symbol or a move. 
 
Once the basic sets involved in  descriptions of the processes, are encoded, we 
describe the function δ. 

We are going to construct UTM as a Deterministic Turing Machine and hence for the 
move (qi, aj, qk, al, mf) the components qk, al and mf  are uniquely determined by the 
pair of qi  and aj and hence we use the shorthand Mij for the move (qi, aj, qk, al, mf). 
 
By the above-mentioned coding scheme, the five components qi, aj, qk, al and mf are 
respectively represented as λ (qi), λ (aj), λ (qk), λ (al) and λ (mf), each of which is a 
sequence of 0’s.  
 
Next the move Mij given by (qi, aj, qk, al, mf)   may be coded in terms of {0,1} by 
replacing each ‘,’ by one 1 and each parentheses also by one 1.  
 
Thus each move Mij is coded as 
1 0i+1 1 0j 1 0k+1 1 0l 1 0ξ 1,  
where  
 ξ = 1, if move is to the Left, 
 ξ = 2, if move is to the Right, and 
 ξ = 3, if there is to the ‘No Move’. 
 
As, each of the moves will begin and end with a ‘’1’, hence, there will be two 1’s 
between two moves. in the representation, the therefore, moves are distinguished 
from its components like states etc 
But there is only one 1 between various components of a move. Further, by 
beginning and ending of the code of a TM marked by three1’s, we distinguish a 
TM from its components, i.e, its moves. Also, as mentioned earlier, a Turing 
Machine is completely specified by the initial state say qo and λ the Next-Move 
function.  
 
In view of these notational conventions, the code of a TM, may be given by 
 
111 λ  (qo)1 λ (M11)1 λ (M12)1 λ (M14)…1 λ (M21)1 λ (M22) ……. 1 λ (Mmn)11                             
 
               ……………….. (A) 
 
We may notice that the code of a TM has only two 1’s explicitly given at the end of 
the code. The third 1 is contributed by the code of λ (Mmn), the last move of the 
machine M. 
We recall that  
Γ∞  = {a1, a2…….}  
denotes the set of countably infinite tape symbols and each of the tape symbols aj, 
will be coded as  
 λ (aj)= 0j for j = 1, 2, 3                            ..……………..  (B)  
  
The encoding of various code symbols in the (initial) input are separated by 1’s, eg, 
if a2 a4 a7 is the initial input then it may be represented as 102 104 1 07 1. 
 
Remark 2.3.1: 

From the above discussion, we make the following observations, which will play an 
important role, when later on, we would be giving examples of a language having or 
not having some properties: 

70 



 Turing Machine-
Miscellany 

 
(i) Every TM can be thought of as a unique sequence of binary digits, but only 

special types of binary sequences, e.g., sequences starting with three I’s. 
(ii) Not a separate observation, but a consequence of observation (i) above but 

stated separately in view of its significance, is that not every binary sequence 
represents a TM. Thus every binary sequences can be interpreted as at most 
one TM 

(iii) In view of (i) and (ii) above, if a binary word w represents a TM M then w 
treated only as a binary string (and not treated as representation of TM) can 
also be given as input to the TM M and hence the question ‘Does M accept 
w?’ or ‘Does a TM having w as its representation accept w as an input 
string?’ is a relevant question. This question may have a ‘yes’ answer for 
some pairs of (M,w) and ‘No’ answer for some other pairs of (M,w). 

 
Next, we briefly describe how the UTM will solve a problem P for which a TM 
M already exists.  As a first step, the process component of M is encoded in terms 
of the alphabet set {0, 1} as given by (A) above and the (initial) input is encoded 
using the coding given by (B). 
 
We assume the UTM is a 3-Tape Machine. The encoding of the input for the 
problem P is written on the first Tape of UTM. On the second Tape of UTM is 
written the process component of M as is given by (A) above. On the third Tape, the 
current state of M is stored. The control unit of UTM simulates the TM M. The 
control unit by counting number of 0’s between 1’s, finds out the input symbol aj on 
Tape 1 and finds the current state qi from Tape 3 of UTM.  At This stage, control of 
UTM knows the pair (qi, aj). which uniquely determines the move Mij = 
(qi,aj,ak,al,mf).  The control unit extracts the quintuple (qi, aj, qk, al, mf).   From the 
quintuple, the control unit of UTM extracts qk, the next state of M;  al, the next 
symbol to be written in the current cell being scanned; and mf  the move of the Head.  
The control unit of UTM then writes qk in place of  qi  on Tape 3; writes al in place of 
aj on Tape 1 and moves the Head on Tape 1 of UTM according to mf.  Thus 3-Tape 
UTM is able to solve the problem P by simulating the solution imbedded in TM M. 

2.4 LANGUAGES ACCEPTED/DECIDED BY TM  

Problem, its instance and its language: 

Let us understand the difference between a problem and an instance of a problem 
(sometimes called a question) from the following statement:  
 
A problem may be to find out the roots of a (general) quadratic equation say  
ax2 + bx + c = 0, with a ≠ 0, where a, b, c ∈ R, are parameters of the problem. A set 
of values one for each of the three parameters, gives an instance of the problem 
(i.e., a question).  Thus finding out the roots of a quadratic equation 4x2 + 3x + 2 = 0 
is an instance of the problem of finding the roots of the quadratic equation ax2 + bx + 
c= 0. 
Hence,  the problem of finding the roots of the equation ax2 + bx + c = 0 can be 
equivalently represented by the set of all triples of the form (a ≠ 0, b, c), where each 
triple, which is just a single string, say (4, 2, 0), represents an instance of the 
problem.  Therefore, the problem of finding roots of a quadratic equation ax2 + bx + c 
with  
a ≠ 0, b, c ∈ R is equivalently represented by the infinite set {(a, b, c), a, b, c ∈ R and 
a ≠0)}, where each member string (a, b, c), like (4, 2, 0), represents an instance of the 
problem. 
 
In general a problem is a set of its instances, where each instance is obtained by 
assigning values to the parameters, from the domain, say D, over which the 
problem is defined.  Thus a problem is equivalently defined as a set from a 
domain D.  Also, each of the element of a domain D can be written as a string over 
some alphabet.  For example, in the case of the problem of finding roots of a 

 
71



 
Turing Machine and 
Recursive Functions 

quadratic  equation, the domain consists of triples (a, b, c) were a, b, c are integers 
and a ≠ 0.  But each integer can be written as a sequence of digits from the alphabet  
{0, 1, 2,.., 9}.  And hence each triplet can be written as a sequence over the alphabet 
{0 1  ….. 9   ,     ) ,  (  }    Thus, we conclude that each problem can be thought of 
as a set of strings over some alphabet.  Also, a set of strings over an alphabet is 
also called a language over the alphabet. 
 
Thus, we further conclude that a problem can be thought of as a language over 
some alphabet. 
 
In the following discussion, unless mentioned otherwise, a language L representing an 
arbitrary problem P shall be over an alphabet, which we denote by Σ.  In other words, 
a language L will be assumed to be a subset of Σ*.    
For a problem, number of instances need not always be infinite.  For example, in the 
problem, of finding roots of a quadratic equation  ax2 + bx + c = 0 in which each of  
a,≠0, and c is a natural number less than or equal to 10, then the set of instances or 
the set of strings representing the problem is 1210, which is finite.  However, in 
context of problems, we are interested, problems generally have infinite number of 
instances, i.e., the sets representing the problems have infinite strings.   
 
Definition: Turing Acceptable Language:  A language  L ⊆ Σ* is said to be Turing 
Acceptable language if there is a Turing Machine M which when given an input w ε 
∑*, such that w also belongs to L, then halts with an output Y.   However, if ω ∉ L, 
then M may not halt further if the Turing Machine halts, on an input ω with  ∉ L 
then it should halt with an output different from  Y.     
 
Some authors call Turing Acceptable Language as Recursively Enumerable 
language also. 
 
Definition: Turing Decidable Language:  A language L ⊆ Σ* representing a 
problem over ∑, is said to be Turing Decidable, if there is a Turing Machine M which 
always halts when given any input w∈Σ* whether ω ∈ L or ω ∉ L.  Further if  ω ∈ L 
then M halts with output Y, indicating that the string ω is in the language L.  And if 
ω ∉ L, then M halts with output N, indicating that ω does not belong to L.  
Decidable/Solvable Problem: A problem P is said to be Decidable or Solvable if the 
language L ⊆ Σ* representing the problem is Turing Decidable.   
(Some authors call a Turing Decidable language as Recursive set or a Recursive 
Language.) 
 
Also, we know that an Algorithm is a program that terminates on all inputs.  And, 
also it is not difficult to see that each TM that halts for all inputs can equivalently be 
expressed as a programme and vice-versa.   
 
Thus, the three statements:   
 
• the statement that a language L is Turing Decidable 
• the statement that language L is a recursive set and  
• the statement that there is an algorithm for recognizing L  

are equivalent. 
 
Note: The phrase recognizing A TM a language is different and more powerful than 
the phrase “A TM accepting a language  
 
Remarks 2.4.1:  It may be clearly understood that in the case of a language L which 
is Turing  Acceptable Language but which is not Turing Decidable, there may be a 
TM M which halts on large number of input strings ω, where ω ∉ L, but there must 
be at least one string ω∉ L on which M does not halt. 

72 



 Turing Machine-
Miscellany 

 
Similarly, in the case of a language L which is not Turing Acceptable (and hence can 
not be Turing Decidable), it may happen that there is a TM M which may halt for a 
large number of inputs w which belong to L.  But there must be at least one string  
w ∈ L for which M does not halt. 
 
Remark 2.4.2:  In respect of the languages defined above, we make the following  

observations: 

(i) Each Turing Decidable language L is necessarily Turing Acceptable.   
 
(ii) However, there may be languages which are Turing Acceptable but not Turing  
 Decidable.   
 
(iii) Further, there may be languages L ⊆ Σ* which may neither be Turing 

Acceptable and hence nor Turing Decidable.  For a language L which is not 
Turing Acceptable, there can not be any  Turing Machine M which halts for 
every string ω of L. 
 

Before discussing properties of the classes of Turing Acceptable languages and 
Turing Decidable languages, let us mention that we need to consider at least one 
example of each of the languages, which is  
 
(i) Turing Decidable. 
 
(ii) Turing Acceptable but Turing Decidable. 
 
(iii)  not Turing Acceptable (and hence not Turing Decidable).   
 
However, the last two required examples form the background of subject-matter 
of  the next section. 
 
Next, we discuss some basic properties of the class of Turing Decidable 
languages and class of Turing Acceptable languages.  
 
As languages are sets (of strings), therefore, we can talk of union, intersection, and 
complementation etc. of languages.  
 
Theorem 2.4.3   
For two recursive languages L1 and L2, each of the following languages  
(i) L1 ∪ L2

(ii) L1 ∩ L2

(iii) Σ* – L1

is recursive. 
 
We establish each part of the above Theorem by constructing an appropriate TM 
deciding the language. 
 
Proof:  Let Mi be a TM for deciding the language Li for i = 1, 2,  such that if ω ∈ Li 
then Mi returns Y else returns N . 
For establishing Part (i) above: we first of all, construct a newTuring Machine M3 

having {Y, N} as the set of symbols.   These input symbols are the only possible 
outputs of each of M1 and M2, and whenever these outputs are available, are written 
on the Tape of M3 as inputs to M3. The machine M3 returns Y  as output, if at least 
one of the outputs of M1 or of M2 is  a Y,  
 
However, if there is no Y  in the input to M3 then the machine returns N. The 
required TM M-Union has M1, M2 and M3 as component machines arranged as given 
by  the following figure has The overall control is with the machine M-union. 
 

 
73



 
Turing Machine and 
Recursive Functions 

 
 
      
 
 
 
 
 

 

 

Next, we briefly explain the functioning of the designed machine M-union A 
string w ε ∑*, when given as input to M-union, is further given by the control of 
M-union, as inputs to both M1 and M2. 

As both languages are decidable, therefore, after some finite amount of time, both 
halt, each with an output as Y    or  N.  These outputs, whenever delivered are written 
on the Tape of   M3.   When both the outputs are written on the Tape of M3, M3 is 
activated. According to the definition of M3, it halts with the desired output Y    if ω 
∈ L1, or ω ∈ L2, else the machine halts with output N .   The output of M3 is the 
output of M-union.  
 
Thus, for each w ε ∑*, M-union returns a Y   or N and hence its language L1 U L2 is 
Turing Decidable.  
 
Part (ii)  In this case, first of all, we construct a TM M4 having { Y N}as set of 
input symbols.  These input symbols, as mentioned earlier, are the only possible 
outputs of each of M1 and M2.  These outputs whenever available are written on the 
Tape of M4 as inputs to M4. The machine M4 is designed such that it returns a Y if 
the input sequence consists of both Y’s.  However, if the input sequence consists of 
at least one N then M4 returns N . 
 
 
      
 
 
 
 
 
 

 

 
 

M3 

M2

 
M1 ω 

M2

M4 

ω∈ Σ* 

M1

 

The required TM M-intersection has M1, M2, and M4 as component machines as 
given by the above figure.  The overall control also is under M-intersection.  The 
machine functions on the similar lines as M-union functions.  The only difference is 
that its component machine M4 return Y  if both M1 and M2 return a Y , else M4 
returns N.  And the output of m4 is the output of M-unit.  Thus for each ω ∈ Σ*, 
returns either a Y  or N  in such  manner that if ω ∈ L1 ∩ L2 then M-intersection 
returns a Y as output, else N as output.  Hence its language L1  ∩ L2  is Turing 
Decidable. 
 

74 



 Turing Machine-
Miscellany 

 
Part (iii): In this case, we construct a TM  M5 which on reading a Y  returns N and 
on reading an N returns a Y  . 
 
The required TM machine M-complement the following diagrammatic 
representation. 
 

 

      
 
 
 

     

The machine M-complement functions as follows :  When a string ω ∈ Σ*  is given an 
input to M-complement, its control passes the string to M1 as input to M1.  As M1 as 
decides the language L1, therefore, for ω ∈ L1 after a finite number of moves, M1 
outputs Y  which is then given as input to M5, which in turn returns N.  Similarly, for 
ω ∉ Li , M5 returns Y.  Also the output of M5 is delivered as output of M-
complement.  Thus for each ω ∈ Σ* M-complement returns either a Y or N s.t, if ω ε 
L1 then M-complement returns N, else returns Y.  Hence the language of M-
complement is Turning-Decidable.  
 
Theorem 2.4.4:   If L1 and L2 are recursively enumerable (i.e, Turing Acceptable) 
languages then L1 ∪ L2 is also recursively enumerable. 
 
Proof:  Let Mi , i = 1, 2, be   TM, that accepts all strings ω ∉ Li, but may or may not 
halt if ω ∉ Li.  
Then a TM M-A-union with the following configuration and description accepts 
L1 ∪ L2.   
  

  
 
 
      
 
 
 
 
 
 
 
  

The  overall control in M-A-Union which may stop and start any or all of M1, M2 and 
M6.   The TM  M6 functions as follows:  If , at any stage, there is an output from any 
one of  M1 or  M2, then on the first output from either M1 or  M2,  the machine M6 is 
activated and the output from M1 or  M2, whichever is available,  is written on the 
tape of M6.   If the output is Y   either from M1 or  M2, say M1, then the control of the 
overall machine M returns a Y and halts the machine.  However, if it is an N , say 
from M1, then the other machine M2 and hence the overall machine M continue 
operations.  If at any later stage, the other machine, which we have assumed is M2, 
halts and M2 halts with a Y ,  then overall machine M gives the output Y  and Halts.  
If  M2 halts with an N  ,  then  N  is returned.  However, if either none of the two 

 

M1 M6 

M2

ω ∈Σ* 
M5 M1

 

ω ∈ Σ* 

 
75



 
Turing Machine and 
Recursive Functions 

machines M1 or  M2 halts, or one of the machines halts with output  N  but the other 
machine does not halt then, the overall machine continues its operations without 
halting.  
Theorem:   For a given language L, if both the languages L and  L  = Σ ~ L are 
Turing Acceptable, then L is Turing Decidable. 
Proof:   Let M and M  be the TMs that accept respectively the languages L and L .  
The overall machine UM with following configuration and description will, as we 
will show, be able to recognize/decide the language L, thereby establishing that L is 
Turing Decidable.  
 

 

  M 

M  

ω ∈ Σ* 
 
 
 
      
 
 
 
 
 

   UM 
Whenever an input string ω ∈ Σ* is received by UM, its control unit writes ω on the 
tape of both the machines M and M  and activates both M and M .   Whenever an 
output if at all, comes out of M or M then the overall machine UM gives output and 
Halts.  
 
After following actions: If w ε L then M halts with output   Y. In this case the overall 
control returns Y as the output of UM.  Further, if case ω ∉ L then M halts and 
returns Y.  The overall control on checking a Y from M  returns N as output of UM.  
Thus for ω ∈ Σ*, the machine UM always halts and returns Y if ω ∈ L and returns N 
if ω ∉ L.  Thus UM decides the language L.  Therefore, L is a Decidable language. 
 
When a problem is said to be (formally) solvable/unsolvable? 

The issue of solvability/ unsolvability of some of the problems like squaring a circle 
have been occupying the attention of the scholars since time immemorable.  In the 
recent times, Fermat’s Last Theorem and Four Colour Problem ,though solved, have 
been occupying attention of the researchers/scholars in the concerned discipline.  
Also, now computers are being used as tools for helping the human beings in 
attempting solutions of problems.  Thus, it is very important to know what in formal 
sense we mean by a solution of a problem. We discuss the issue briefly here.  
However, the issue is the main topic of discussion in a later unit. 

From our earlier discussion, we know that each problem may be represented by a 
language say L.  Then we say a problem P is an unsolvable problem if the 
language representing the problem is not decidable, i.e., no Turing Machine can 
be designed which decides the language L corresponding to the problem P.  The 
following problem, which is quite simple in description, is one of the problems, 
which is a well-known unsolvable problem.  
 
Unsolvable Problem:   
 
The Halting Problem: Given an arbitrary machine M and a string ω, does M halt 
with ω as input string? 
Remark 2.4.5:    
 
The above problem is mentioned just to show how the concepts of Turing Decidable 
and Turing Acceptable machines are related to problem solving.  However, the proof 

76 



 Turing Machine-
Miscellany 

 
of the above claim about unsolvability of Halting Problem and general discussion of 
solvable/unsolvable problems will be subject matter of a later unit. 
 
Remark 2.4.6:  
Though the proof of the above claim will be taken up in a later unit, however, briefly, 
we will like to tell here what is meant by an unsolvable problem through the example 
of Halting problem.  In this context, it may be stated that there can be large number of 
TMs, in case of each of which it is possible to tell whether it will halt on particular 
strings or not.  But, if the Halting Problem is unsolvable, then given a general TM 
and an arbitrary input string, it is not possible to tell whether the TM will halt or not.  
The situation is somewhat similar to saying that there is no systematic method which 
can solve an equation of degree 5 or more.  But for equation of the form x5 – a = 0 or   
a x10 + bx5 + c = 0, there are systematic methods which can solve equations of degree 
greater than or equal to 5.   But still we say the problem of finding roots of an 
equation of degree 5 or more is unsolvable. 
 
Ex. 3)  Show that the language L = { an bn cn ≥ 0} 
 Is Turing Decidable, showing thereby that every decidable language need not   
             be a context-free language. 
 
 
 
 

2.5     THE DIAGONAL LANGUAGE AND THE 
UNIVERSAL LANGUAGE 

2.5.1 : Definitions of the Languages 

In continuation of our discussion, in Section 2.3, about representation of TMs as 
binary strings, we discuss two very important, but not intuitive, languages which 
provide important examples for languages having some particular properties but not 
having some other properties.  The languages are  
 
(i) Ld, the language of strings w, where each string w in Ld is such that w is 

not acceptable by TM M having the string w as its representation.  Ld 
also includes those strings w which are not binary representation of any TM.  
For example, as representation of every TM, by our construction in Section 
2.3, must have ‘111’ as leading part of its representation as a binary string, 
therefore the binary string ‘00’ is not a representation of any TM and hence 
the  string 00, not being representation of any TM, can not accept any binary 
string w and hence 00 also belongs to Ld  

 
In literature, Ld is also known as NSA not self-accepting and by some other 
names.  The suffix d stands for diagonalization, the significance of which will be 
explained later. 
 
(ii) Lu, the set of all binary string α, where α represents the ordered pair (M, w) 

where M is a Turing Machine and w is any binary string such that M accepts 
w.  In other words α=(α1, α2) is some suitable binary representation of <M, 
w>,where α1 is a binary representation of a TM M and α2 = w is a binary 
string and M accepts w.  Lu is also the language representation of what is 
known as Halting Problem for Turing Machine.   

 
Explicitly, Halting Problem states:  Is it possible to tell, for an arbitrary TM M and 
an  
                                                        (arbitrary) input string w, whether M accepts w?   
 

 
77



 
Turing Machine and 
Recursive Functions 

The answer to the Halting problem is no, and we discuss the problem in detail 
later. The suffix u in Lu stands for universal. 
The following two important questions arise about the two languages viz Ld and Lu 
defined above 
 
(i) Can we show the existence of each of Ld and Lu by some constructive methods? 
(ii) Is each of the two languages Ld and Lu Turing Decidable?  And if any of these 

is not Turing Decidable, then is that language Turing Acceptable? 
 
First of all, we answer the Question (ii) above without justification.  Justification 
for our answer will be given after a while. 
 
• The language Ld is not Turing Acceptable (and hence not Turing  
          Decidable). 
• The language Lu is Turing Acceptable but not Turing Decidable. 
 
2.5.2 Constructive Existence of Ld  

From Section 2.3 on Universal Turing Machine, we know that each Turing Machine 
can be represented by a finite string over {0, 1}. In order to show the existence of Ld 
and Lu by constructive means, we discuss a method of enumerating all TMs, i.e, 
listing all TMs by some ordering of their binary representations. For this purpose, we 
define a rule which gives a sequence for representations of TMs, in which a particular 
representation follows an already enumerated representation, if any.   
 
By a similar method, we can enumerate all input strings w over { 0, 1}.   
 
We make a list of  binary representations of all TMs constructively as follows:  
First, we take all binary strings of length 0, then we take all binary strings of length 
1; followed by all strings of length 2 and so on. 
 
For distinct strings say si1and si2 of length i, we find out the decimal numbers d1 and 
d2 having si1and si2 as binary representations. Then, in our listing, si1 precedes si2, iff 
d1 < d2.  Thus all binary strings representing TMs are listed in an order which is 
generally called lexicographic order. 
 
The ordering of TMs is as follows: 
 
(i) Take one by one binary strings in the lexicographic ordering defined above. 
(ii) For the chosen string α, check whether it represents a TM according to coding 

defined in Section 2.3.  If α does not represent a TM, take next string from the 
list and go to Step (ii).  If α represents a TM, follow the next step. 

(iii) If α represents a TM, then α is put at the end of the list containing members of 
the list already obtained by the process. And then take next string from the 
listing of strings and go to Step (ii) above. 

 
This is called enumeration of TMs. After the above discussion, all TMs can be 
listed as T1, T2, T3… according to lexicographic listing of their binary 
representations. Similarly, all input strings can also be listed as w1, w2, w3.... We have 
already explained that, in general, how any finite or infinite set of binary strings, 
where a string may or may not be representing a TM or may or may not be 
representing an input w, can be lexicographically ordered.   
  
Constructive Existence of Ld, the language of all those strings w s.t 
• w represents a Turing Machine say Ti, and further,  
• If w is given as input to Ti, then Ti does not accept w.   
The construction of Ld is three-step process: 
 

78 



 Turing Machine-
Miscellany 

 
Step (i):   Make a Table of the form with row-headings as Ti in the order defined 
above and column headings as wj the binary strings, which are also lexicographically 
ordered, and which may be given as inputs to Ti. 
 
At this stage, the table may appear as 
             w1     w2   w3    … 
 
        
                  
 
 
  

T1

T2

T3
.
. 

 
(In the above table Ti may be a hypothetical TM, which actually do not represent any 
TM.  In such cases, for any string w, we say Ti does not accept w, where w may be 
any string.  The complete row for  such a Ti consists of 0’s only.) 
  
Step (ii):   Next we fill up entries of the table as follows.  The entry (Ti, wj) is 1 if  Ti 
accepts the string wj and the entry (Ti, wj) is 0 if  Ti does not accept wj. 
 
 
Thus, let us assume we get a table of the form 
                     

 w1 w2 w3 w4  

T1
T2
T3
T4

 1    
 0  
 1 
 1 
  .    
  .    
  . 

0 
1 
1 
0 
. 
. 
. 

0 
0 
0 
1 
. 
. 
. 

1    … 
1   … 
0   … 
1  … 
… 
… 
… 
 
 
 
 

 

     
Step (iii): Next we construct the language Ld as 
Ld = { u1, u2, ………, uk, ……..} 
where string uk is obtained from the row labeled Tk in the above table, by inverting 
its kth bit and keeping all other bits unchanged.  For example, u1 =  0 001 ……. 
Which is obtained from the row labeled as T1 by inverting the bit in (1, 1) th 
position.  Similarly  
u4 = 1010……….., which is obtained by changing (4, 4)th entry of the row labeled 
with T4 as row-heading. 
This completes the construction of Ld

Remark2.5.2.1:   

The process of obtaining Ld is by replacing the values of the diagonal elements by 
any value different from the earlier value. This is why, the process is also called 
diagonalization.   
Diagonalization is an important method of showing that a language does not have 
a particular property.  The method was devised by the well-known mathematician 
Georg Cantor (1845-1918) and used the method in 1895 to show that not every real 
number is a rational number. 
2.5.3  Constructive Existence of Lu   
Lu is  the language of strings of the form α, where α represents an ordered pair 
(α1, α2) with α1,  a binary string, representing a Turing Machine say Mi and α2, 
some binary word, such that Mi accepts α2.  

 
79



 
Turing Machine and 
Recursive Functions 

Once α1 and α2 are known, by an appropriate binary encoding scheme for making 
ordered pairs out of binary strings, it can be easily seen that α ε Lu  is a binary 
string.  Further the strings within Lu are enumerated by Lexicographic ordering.  
This completes the listing process for the elements of Lu.  
 
2.5.4: The Diagonal Language is not Turing Acceptable 
Remarks 2.5.4.1: 

Before we go ahead with the proof of properties of Ld and Lu, it is interesting, and 
will be later on useful also, to consider sets representing similarity and differences 
between elements of Ld and Lu, the complement of Lu  
Ld = { w: w is not acceptable by the TM having w as its binary code} 
 = { w : w is not a representation of any TM} Υ { w : w is binary code of a TM say 
Mj but Mj    
does not accept w} 
 
Lu = { < M, w> : < M, w> is binary code representing the pair (M, w) where M is a  

        Turing Machine that accepts w} 
Therefore 

uL = { α : α is a binary string s.t either α ≠ < M, w> or if α = < M, w> then M does 
not 

  accept w}  

 = { α : α does not represent ordered pair of a TM and an input string} { α : α = < 
M, w> and M does not accept w} 

Υ

 
Remark 2.5.4.2: 
We may note there is parallel between each pair of languages Ld and uL  and the 

languages dL  and Lu. However, differences between languages within a pair are 
of the form of inputs: 
 
(i) A member of Ld is a string w which represents just the input to the Turing 

Machine M, which, if exists, does not accept w.  Therefore, there is inbuilt 
system which finds out whether such an M exists or not  

(ii) However, uL  is though again a binary string α, yet it represents (M, w), i.e, 
there are two distinct parts in α, first part of α is expected to represent a TM 
M and the rest of the part an input string w to M s.t M does not accept w. 

 
The first part of α may not represent a TM and then automatically α ε uL  without 
any further the T.M, which failed to exist. 
The main difference between Ld and uL  is that a member of Ld  represents only 
inputs w to TMs whereas the each member of Lu is a binary string the form <M, w> 
in which first part is expected to represent a TM and second part an input to TM.  
Similar are the difference between dL  and Lu

Next, we prove that the statements made earlier about Ld  
Theorem 2.5.4.3:  The language Ld is not Turing Acceptable (or equivalently Ld is 
not recursively enumerable) 
 
Proof:  The theorem is proved if we are able to show that there does not exist a TM 
which accepts the language Ld. Now the proof follows from the following facts 
which we came across during the construction of Ld: 
 

80 



 Turing Machine-
Miscellany 

 
(i) All possible Turing Machines are listed as row-labels in the table constructed 

for the definition of Ld.  Thus if there is a TM that accepts Ld then it must be 
label of some row i.e, must be some Ti which a row-label of the table. 

 
(ii) Ld by its construction, differs from the machine Tk in the kth position, for all 

k.  In other words Ld ≠ Tk for all k. 

Therefore, there can not be any TM that accepts Ld

Remark 2.5.4.4: 

Proving of Ld as not Turing Acceptable, by itself, may not appear to be a great  
achievement in the sense that Ld is a highly contrived unintuitive language.  The 
significance of Ld not being Turing Acceptable, lies in the fact that, it is used in 
establishing non-Turing-Decidable/acceptable character of a number of languages, 
which are not so unintuitive. We will discuss a number of Turing non-decidable or 
undecidable languages and problems in Block3.  At present we discuss properties 
of the universal language Lu  

 

2.5.5 Lu Turing Acceptable but not Decidable 
 
Theorem2.5.5.1:    

The language Lu of all binary strings α representing those pairs of arbitrary TMs 
M and arbitrary input strings w for which M accepts w, is Turing Acceptable but 
not Turing Decidable.  
May be used as justification for the Halting problem is undecidable. 

Proof: The proof consists of two parts 

(i) Lu is Turing Acceptable 
(ii) Lu is not Turing Decidable 
 
Lu is Turing  Acceptable: A language L is acceptable if we are able to design a TM 
M that accepts L.  We only sketch below the design of the required TM M, which, 
designed on the pattern of a Universal Turing Machines, is a three-tape TM.  For a 
given TM  M and an input string w, the following steps are taken to return a yes, if 
M accepts w: 
 
Step 1   (a)   The binary code of M followed by the input string w is placed on 
Tape1  

which is only read, but not written, to guide simulation of the behavior    
of machine M on input w. 
 

    (b)  The Tape 2 is used for simulating the behaviour of M on  w as input.   

                     Initially Tape 2 is written with the string # w #. 

Tape 3 contains the state of M, during the process of simulation of M by M.  Initially, 
q0, the initial state, is written of Tape 3. 
 
Step 2: The Process of Simulation of M by M 

At any time, the Head of Tape 2 scans a cell of Tape 2 and hence, knows its contents 
v at any point of time in the process of simulation of M, The control of M  also 
knows the state q of  the simulated machine M from Tape 3. From the known pair (q, 
v) the control of M finds from Tape 1 the value (p, u, m) s.t δM (q, v) = (p, u, m)’ 
where δM is the next-move function of M.  At this stage, the control of M takes the 
following actions: 
 

 
81



 
Turing Machine and 
Recursive Functions 

(i) replaces the contents of the currently scanned cell of Tape 2 from v to u.  And 
moves the Head of Tape 2 according to the move m; 

(ii) changes the contents of Tape 3 to represent the new state p by replacing the 
representation of the previous state q. 

 
If M accepts w, then the whole process is repeated till we reach halt state of M in 
which case the control of M returns ‘yes’ and if required, waits for the next (M, w) 
pair to be written on Tape 1 and whole process is repeated. 
 
The language Lu is not Turing Decidable: 
 
We prove the above-mentioned statement by contradiction.  Let Lu be decidable.  
Then, by definition, uL , the complement of Lu, is Turing acceptable.  But, then we 

show below that (Turing) acceptability of uL  implies acceptability of Ld.  But we 
know Ld is not acceptable.  Hence we arrive at a contradiction, leading to the fact that 
the assumption is wrong.  Therefore Lu would be undecidable. 
 
 
Next we show uL is acceptable ⇒ Ld is acceptable. 

If uL  is acceptable then there must be a TM say 
u

M that accepts the language uL .  

We intend to design a TM Md which accepts Ld using 
u

M  as a component as shown 
below.   
(But,  Md otherwise should not exist as Ld has already been shown to be not 
acceptable)  
 
 
       

 
 
 

    

 

   

Mic

u
M  

Moc

 
 
 
Md consists of three parts 
 
(i) Mic which converts L the input to Md, into an input to 

u
M .  In other words, Mic 

converts a member of Ld into a member of uL  
(ii) 

u
M , being a Deciding machine for 

u
L returns a ‘Yes’ or ‘No’ on each input w, 

irrespective of whether α∈Lu or α∉Lu   
(iii) Moc then converts this Yes/No into an appropriate response of Md to α, as input 

to Md 
 
As 

u
M  is assumed to be already designed TM that decides language

u
L , therefore, if 

we are able to explain the designs of Mic and  Moc then Md will be designed. 
 
Also, we have already explained that Ld and

u
L  represent equivalent languages 

except the form of its members.  Therefore, responses of machines Md and 
u

M must 
be same the on corresponding inputs. Therefore, Moc is an identity machine that 
returns the input as output. 
 

82 



 Turing Machine-
Miscellany 

 
Hence we are left with the design of Mic, which we accomplish as follows: 

Let α be an input to Md, the (hypothetical) machine that accepts the language Ld.  
Therefore α must be treated as a binary string which is to be given as an input to the 
TM, which if it exists, has α itself as its code.  As all TMs are lexicographically 
coded, therefore an algorithm can be designed to find out whether α is a code for a 
TM or not.  If α is not the code of a TM, then it can not accept itself as input and 
hence the question ‘Does α reject α?’ has answer yes. Therefore, we may give the 
output of Md as accepted or Yes without feeding it to

u
M . 

 
If α is the code of some TM say M, where M is found by the step, explained in 
previous paragraph,  then the code for the ordered pair M and α is given as input to 

u
M .  This completes the construction of Mic and hence of Md which decides Ld if 

u
M decides 

u
L . 

 
But, as Ld is Turing undecidable, there can not be a TM Md deciding it. Hence no 

u
M  deciding 

u
L  can exist leading to the conclusion that 

u
L  is undecidable. 

 
Remark 2.5.5.1: 
 
The proof given above in support of the truth of the statement ‘Lu is not Turing 
Decidable’, may without any change, be given in support of the truth of the 
statement:  Halting problem is undecidable. 
 

2.6  CHOMSKY HIERARCHY  

In the previous units of the course, we discussed languages, i.e, sets of strings each 
over a (finite) alphabet from at least two different perspectives: 

(i) Languages accepted by automata viz accepted by Finite Automata, by  
 Pushdown Automata and by Turing Machines. 
(ii) Languages generated by formal grammars viz  by a context-Free  

Informally, a grammar is a notation for specifying/defining its language through a 
finite number of rules. 

To have an idea of what a grammer is in the formal sense, we recall the definition of 
a context-free grammer.  (In the literature, there are many variations of the following 
definition). 

A context-free grammer of a language is given by  

G = (V, T, P, S),  
where V is the set of variables, T is the set of terminals, S the start symbol and P is 
the set of productions of the form 
A  α →
and where A ε V, the set of variables and α ε (V ∪ T)*, i.e, α is a string, possibly 
empty, of variables and terminals.   
In the formal sense, a general grammer G may be defined as a four-tuple  
G = (V, T, P, S). 
 
The three components viz V, T, S may be the same for various types of grammers.  
However, it is the form of productions that distinguishes the types of languages.  
Chomsky∗ is among the first in the modern times to have introduced the concepts of 

                                                 
∗Chomsky N : Three Models for the Description of language, IRE Transactions on          
   Information Theory 2: 113-124, 1956 
*Chomsky N :        On certain Formal Properties of Grammers, Information and control  2:  
   137- 167,1959  

 
83



 
Turing Machine and 
Recursive Functions 

                                                                                                                               

formal grammer/language.  However, the idea of defining languages through formal 
grammars was used many centuries before Christ, by Panini, a Sanskrit scholar, in 
defining Sanskrit language through formal grammars.   

Chomsky through his papers, defines four classes of languages and named these 
classes as Types 0, Type 1, Type 2, and Type 3, such that each language of type (i 
+1) is also a language of Type i., but converse does not hold.  However, now-a-days, 
these classes are better known by other names.  For example, 
 
The type 0 languages are better known as recursively enumerable languages, or as 
phrase-structure languages or sometimes as semi-there and even as unrestricted 
languages. 
 
The type 1 languages are known as context-sensitive languages (CSL) 
The type 2 languages are known as context-free languages (CFL). Finally,  
the type 3 languages are called regular languages. Another type of languages, which 
is not mentioned under the Chomsky Hierarchy is the type of recursive languages of 
Turing Decidable languages, which as per definition given earlier, are the languages 
L over alphabet ∑ each of which a TM T can be designed which halts for every string 
α ε ∑*, irrespective of whether  α ε L or α ∉ L. 
 
Also, we may notice that out of the five types of languages mentioned above, we 
have come at some stage or other all the types except the type of context-sensitive 
languages (CSL). 
 
Also, the Linear Bounded Automata (LBA) which corresponds to CSL is also a new 
type of automata. 
 
Next, we define a (formal) grammar for each type of languages (under Chomsky 
Hierarchy).  Then we mention one-to-one correspondence, between these languages 
and  different types of automata and in the process introduce a new type of automata 
in order, to make the one-to-one correspondence complete.  Also we discuss closure 
properties of the various types of languages. 
 
2.6.1 Grammers for languages under Chomsky Hierarchy∗  
 
Regular languages (Type 3 languages)  
So far, we know that a language L is regular if 
 i.   L is accepted by a Finite Automata       or 
 ii  L can be expressed by a regular expression 
 
Also, we know that a regular language is a context-free language and a context-free 
language can be described by a context-free grammar.   Thus, a regular language may 
be definable by some special context-free grammer.  Actually, a regular language is 
characterized by a special context-free language called regular grammar to be 
defined below.  However, for this purpose, we need the definitions of right-linear 
grammar and left-linear grammer. 
 
Right Linear Grammer: A context-free grammer  
G = (V,T,P,S) 
is said to be right linear if every production in P is of the form 
A  a   or  A a B, → →
Where A and B belong to V, the set of variables; and a belongs to T, the set of 
terminals. S, of course, is the start symbol. 
 
Definition Left-Linear Grammer: A context-free grammer  

 
  
∗ refer PP. 327-330 Introduction to Languages and the Theory of computation by John C. Martin (TMH, 
1998) 
 

84 



 Turing Machine-
Miscellany 

 
G = (V, T, P, S) 
is said to be left linear if every production is P is of the form 
A  a   or  A →  B a →
Where A and B belong to V, the set of variables and A∈T, the set of terminals.  S is 
the start symbol. 
 
Definition Regular Grammer: A context-free grammer  
G = (V, T, P, S)  
is called regular, if it is either left-linear or it is right-linear. 
 
Example 2.6.1.1: The regular language L={an: n ≥ 1} over T ={a} has the regular 
grammer given by 
 A →  a   

A  a A →
We have already studied the context-free grammars and context-free languages 
(Types2 languages) in detail.  Also we know the equivalence of pushdown 
automata to context-free languages.  Therefore, we skip to next type of 
languages. 
 
Next we introduce context-sensitive grammars, context-sensitive languages 
(type 1 languages) and then we discuss linear bounded Automata, all three of 
which are new concepts. 
 
Definition: Context-Sensitive Grammer A grammer 
G = (V, T, P, S),  
 
where V is the set of variables; T is the set of terminals, P is the set of productions 
and S is the start symbol, is said to be context-sensitive grammar, if every production 
is of the form 
α→ β  
Where   
(i)    α, β ∈ (V T)∪ *

(ii)    β ≥   α, where  x   denotes number of letters in the string x 
(iii)    α Contains at least one variable 
 
Definition Context-Sensitive Language:  A language generated by a context-
sensitive grammer is called a context-sensitive language 
 
Example 2.6.1.2:  

We just mentioned, without actually producing a grammer, that many of the 
programming languages including Pascal and C are not context-free, but are context-
sensitive languages.  These languages are not context-free because of the need for 
defining of CSL. 
 
Definition:  Linear Bounded Automata (LBA) is an NDTM 
M= (Q, Σ, T, S, q0, h) 
with the following restrictions: 
(i)  Two special symbols viz and 〈 , not belonging to Γ, are written on the tape 
along with  the input string x=a

〉
1 a2 … an in the following manner 

 
.. .. .. 〈  a.1 a.2 … a.n 〉  

 
In other words the symbols and  are respectively used as the initial right- end 
marker and left-end marker of input string. 

〉 〈

(ii) Tape head may scam the cells containing and 〉 〈 but, these cells can not be  
 written into  

 
85



 
Turing Machine and 
Recursive Functions 

(iii) Tape head cannot move to or seam any cell right of 〉 and any cell to the 
left  
 of 〈  
Remark 2.6.1.3: 

In other words, a Linear Bounded Automata is a restricted Non-Deterministic 
Turing Machine, which does not have potentially infinite tape as working space for 
(intermediate) computations.  Rather working space is restricted to the finite 
number of cells containing the (initial) input and the cells of the two end-markers. 
Remark 2.6.1.4:  In view of the statements above that  
(i) Context-sensitive languages can alternatively be defined as the languages  
 accepted by LBAs 
(ii) Every context-sensitive language need not be context-free language,  
                   we conclude that LBA is more powerful automata machines than  
 pushdown automata. 
 
Next, but not finally, we consider grammars for recursively enumerable 
language, (Type 0) i.e, languages accepted by TMs.   These grammars are 
generally known as unrestricted grammars or phrase-structure grammar.  
 
Definition : Phrase-structure/unrestricted Grammer: 
A grammer 
G = (V, T, P, S), 
is said to be phrase-structure unrestricted grammer, if P consists of productions of the 
form 
α→B, 
where  
(i) α,B are strings over But and  
(ii) α contains a variable. 
 
As usual, the letters V, T and S respectively denote set of variables, set of terminals 
and the start symbol. 
  
Next we discuss a type of  languages, which does not fall under any of the four types 
of languages covered by Chomsky hierarchy, viz recursive language or recursively 
decidable language. 
 
We recall that a recursive language L is language over some alphabet say ∑ ,for 
which there is a TM M such that for each string x ∈ ∑ *,M halts and further 
(i) M halts and returns Y (for yes) for each x ∈ L and 
(ii) M halts and returns N (for no) for each x ∉L 
 
However, so far recursive languages have not been characterized by any 
grammars. 
 
Subject set-Superset Relationship between types of Grammers/Languages 
 
In the earlier units, we have proved or stated that  
(i) Each regular language is a context-free language but the converse need not be  
 true.  For Example, the language {an bn : n 0} is context-free but not 
regular 

≥

(ii) Each context-free language is recursive (i.e, Turing decidable) but the converse  
 need not be time. 
 
For example the language L = {an bn cn::n 0} is not context-free but is Turing 
decidable (i.e, is recursive) language. 

≥

 
(iii) From the definitions of context-free grammers (CFG) and context-sensitive  
 grammar CSG, it is clear that every, CFG is also CSG and hence every CFL is  
  CSL also. However, converse is not true. We have already mentioned that the  

86 



 Turing Machine-
Miscellany 

 
          programming languages  
 including Pascal and C are not context-free but context-sensitive languages. 
(iv) It is beyond the scope of the course, but by using diagonalization method  
 indirectly or directly it can be proved* that 
 
(a) Every context sensitive language is recursive (or Turing decidable)  
 
(b) There is a recursive language, which is not context sensitive language.   
 Moreover, a recursive language containing null string, can not be a context- 
 sensitive language  
 
(v) In the previous unit, we mentioned that every recursive/decidable is Turing  
 acceptable but the converse need not be true   
 
Thus if we use the notations 
 LR: the set of all recursive languages  
LCF : the set of all context-free languages 
LCS   : the set of all context-sensitive languages 
LREC   : the set of all recursive languages 
LPH      : set of all phrase-structured/Turing acceptable recursively enumerable 
languages, then  we have the following set relationship: 
LR ⊆  LCF  L⊆ CS  L⊆ REC  ⊆ LPH

Closure properties of various types of languages under standard set operations 

Definition : By closure property of a set of languages LP having property –P,  
  under an operation say op means that if L1 and L2 are two languages  
in LP then L1 op L2 is also in LP. 

Many of the following properties have been derived in the earlier units.  The rest of 
the properties are just mentioned below without any proof.  Interested reader may 
refer to martin (1998) and Hopcroft and Ullman (1979, 1987). 
 
(i) LR, the set of all regular languages, is closed under all standard set operations,  
 viz under intersection, union, complementation, concatenation and Kleene star. 
  
(ii) LCF, set of all context-free languages, is closed under union, concatenation and  
 Kleene star, but is not closed under intersection and complementation. 
(iii) LCS, the set of all context-sensitive languages, is closed under union,  
 intersection, concatenation and complementation. 
 

However, as a language containing null string can not be a context-sensitive 
language, therefore, for a context-sensitive language L, the language L* can not 
be context sensitive but, it has been proved that if L is context-sensitive then L+ 
is also context-sensitive where L+ is the set of all strings obtained by 
concatenating all finite, but at least one, number of strings from the language L. 

 

2.7 SUMMARY 

In this unit, we discuss various extensions of the standard TM that was defined in  
Unit 1 and state facts of their equivalences to standard TM.  Each TM is designed to 
solve one problem (i.e, one type of questions).  However, Universal Turing Machine, 
which also is defined and explained in this unit, is like a general-purpose computer, 
and hence is capable of solving any problem, provided that the problem is solvable by 
computational means.  Next, we explain how a problem can be thought of as a 
language and how a language is accepted decided by a TM, and in the process, how a 
problem is solved by a TM. 
 

2.8 SOLUTIONS/ANSWERS   

 
87



 
Turing Machine and 
Recursive Functions 

 
Exercise 1 
Part (1): To convert   # w#  into  # w# w# 
 
 
 
Hint     : In stead of the δ -move under (*) of  Step 3 of Example 2.2.3.1, in  
 this case, we have 
  
 δ (q3, #, #) = (q4, (#, R), (#, R)) 
 
Rest of the steps are the same as in Example 2.2.3.1 
 
Part (ii) : To covert  #w#  into # w wR # 
 
Hint : After executing steps 1 and steps 2 of Example 2.2.3.1 in Step 
3 we  

move the Head of Tape 2 towards left and the Head of Tape 1 
towards right as follows 

   
  δ (q2, #, #) = (q3, (#, N), (#, L)) 
  δ (q3, #, #) = (q3, (#, R), (#, L)) 
 
(Copying symbols of Tape2 to Tape1 in reverse order) 
   
  δ (q3, #,#) = (Halt, # , # ) 
 
Part (iii) : To convert  #w#  into  #w#wR#  
 
Hint  : In stead of the followingδ -move of part (ii) above, 
  δ (q2, #, #)= (q3, (#, N), (#, L) 
  we have the following move 
  δ (q2, #, #) = (q3, (#, R), (#, L). 
 
Rest of the δ -moves are the same as in step (ii) 
 
Exercise 2:  The required TM M = { Q, ∑ ⎡, δ, q0, h}, with 

      Q = {q0, q1, h}, ∑ = {a, b}, ⎡ = { a, b, #} and δ being given by the 
following Transition Diagram 

 

 
Fig 1.8.1  

(i) the TM halts in q0, if the first symbol is not an a 

88 



 Turing Machine-
Miscellany 

 
(ii) the TM halts in state q1, if it finds an a after already having scanned  b. 

(iii) In state q0 on scanning a,  the TM activates two branches, viz, one in 
state q0  and the  other in state q1.  If the next symbol happens to be an a 
then the q1-state branch dies and only q0-state branch remains alive.  The 
rest of the behavior of the TM is apparent from the figure above 

 
Exercise 3: In order to show L as Turing Decidable we need to design a TM that 
accepts both the language  
  L = {an bn cn: n 0} ≥
and the language ∑ *~L, we construct a 3-tape TM M as follows: 

Let M = {Q, , , δ, q∑ Γ 0, h}, ={a, b, c} ∑
              Γ ={ a, b, c#} 
The sequence of steps for defining δ  for the required TM is, as given below 
 
Step 1: Write any given string w over ={a, b, c} on Tape 1 as # w and the TM is 
activated in state q

∑
0 where all heads, e.g., H1, H2 and H3 of respectively Tape 1, 

Tape 2 and Tape 3 are scanning of the left-most cells the respective tapes. 
 
Step2: Copy the contents of Tape 1 to Tape 2 and Tape 3 through the following 
moves: 

    δ (q0, (#,#,#) ) = (q1, (#,#,#), (R, R, R)) 
   δ  (q1, (x, #, #)) = (q1, (x,x,x), (R,R,R))     for x ∈ ∑   

 δ   (q1, (#, #,#))  = (q2, (#,#,#), (L,L,L)) 
δ (q2, (#,#,#))  = (h (#,#,#) (N,N,N) 

 
(null the string case acceptance) 

 
At this stage, all Heads are scanning right-most non-blank cells if any, of respective 
tapes. 
 
Step 3: From the right most non-blank cells on three tapes, we reach the right-most 
cell of Tape1 that contains a, if any, and reach right-most cell of Tape2 that contains 
b, if any, and Tape 3 is not moved, by making the following moves 
   δ   (q2,(c,c,c)    = (q3, (c,c,c),   (L,L,N)) 
  δ   (q3, (b,b,c)   = (q3, (b,b,c) , (L,N,N)) 

δ (q3, (a, b, c)) = (q4, (a, b, c), (N, N, N)) 
 

At this stage H1 Head should be scanning right- most a on Tape1; Head 2 should be 
scanning  

right-most b on Tape2 and Head 3 should be scanning right-most C onTape3.  
Further, for strings in L, we do not expect c to the left of any b on Tape 2 and 
no b or c to the left o fany a on Tape 1. 
 
Step 4: Next we match number of a’& on Tape1, to number of b’s on Tape2 and 
number of c’s on Tape3 through the following moves: 
 
  δ   (q4, (a,b,c)    =  (q4, (a,b,c)), (L,L,L) and 

 δ   (q4, (#,a,b)    =  (h, (#,a,b), (N,N,N)) 
 
If we reach the Halt state h through the above-mentioned moves, then the string is in 
the language,  {an bn cn : n 0}, and hence TM returns ‘Yes’ ≥
 
If at any stage, the TM does not have any move, it indicates that the string w is not in 
{an bn cn : n ≥ 0}, and hence TM returns ‘No’ indicating w is in ∑ *~L. 
 
This complete the construction of the required TM 
 

 
89



 
Turing Machine and 
Recursive Functions 

 

2.9 FURTHER READINGS 

1. H.R. Lewis & C.H.Papadimitriou: Elements of the Theory of computation, 
PHI, (1981) 

2. J.E. Hopcroft, R.Motwani & J.D.Ullman:  Introduction to Automata Theory, 
Languages, and Computation (II Ed.) Pearson Education Asia (2001) 

3. J.E. Hopcroft and J.D. Ullman:  Introduction to Automata Theory, Language, 
and Computation, Narosa Publishing House (1987) 

4. J.C. Martin: Introduction to Languages and Theory of Computation,  
            Tata-Mc Graw-Hill (1997) 
 
 
 
 
 
 
 
  
  
 
 
  
 
 
   
 
 
 
 
 
 
  
  
  
 
 

 
 
 
 
 
 
 
 
 
 
 
  
  
   
 
 
 
 
 
 
 

90 


	2
	Lecture Notes on Theory of Computation Module 2 - Unit 2 by Dr. SK Rath
	UNIT 2 TURING MACHINE – MISCELLANY  
	Structure  Page Nos. 
	2.0 INTRODUCTION  
	2.1 OBJECTIVES 
	2.2 EXTENSIONS-CUM-EQUIVALENTS OF  
	 TURING MACHINE 
	Two-way (infinite tape) Turing Machine 
	Therefore, the configuration in the case of (*) given above will be  
	The next Move function ( may be defined as  
	Hanging Configuration in the case of Two-Tape, each Tape being one-way infinite  
	Step 2: Next, we copy the contents of Tape 1 to Tape 2 through 
	After k times executions of the above move, the configuration becomes 
	At the end of k moves the configration becomes 
	Introductory Remarks in context of the Instantaneous Description (ID) or configuration: 
	Remark 2.2.5.1:  
	 
	An important point about the definition of NDTM needs to the highlighted.  By the definition of ( which maps an element of (q, x) of Q x ( to a set {(qi, xi, Mi) } means that each element (q, x) of Q x   has the potential of leading to more than one configurations.  In other words, there are various possible routes to a final configuration from one configuration.  However, during one computation only one of these possible values (qi, xi, Mi) will be associated with (q, x) through (.   But we can not tell in advance which one out of the ordered triples from the set {(qi, xi, Mi)} 
	Remark 2.2.5.3: 
	 
	In the standard TM and the versions discussed before NDTM, we allowed ( as a partial function to Q x ( x {L, R, N}.  In other words, if a value under ( exists  
	for (q, x) then the value has to be unique, i.e, can be determined.  Therefore, the earlier versions are prefixed with the   adjective Deterministic.  The Non- Deterministic form of each of the earlier versions can be obtained by making suitable modifications in the corresponding definitions of ( etc on the lines of modifications suggested in the definition of NDTM from standard TM.   

	Definition:  An Non-Deterministic Turing Machine  
	Remarks 2.2.5.5 
	Example 2.2.5.6:  
	 
	Construct an NDTM which accepts the language { an bm: n 1, m  1}, i.e., the language of all strings over {a,b}, in which there is at least one a and one b and all a’s precede all b’s. 
	 




	2.2.6 Final State Version of the Standard TM 
	2.3 UNIVERSAL TURING MACHINE (UTM) 
	In view of these notational conventions, the code of a TM, may be given by 
	We recall that  
	When a problem is said to be (formally) solvable/unsolvable? 


	In literature, Ld is also known as NSA not self-accepting and by some other names.  The suffix d stands for diagonalization, the significance of which will be explained later. 
	2.5.2 Constructive Existence of Ld  
	Definition: Context-Sensitive Grammer A grammer 
	where V is the set of variables; T is the set of terminals, P is the set of productions and S is the start symbol, is said to be context-sensitive grammar, if every production is of the form 
	Subject set-Superset Relationship between types of Grammers/Languages 
	Closure properties of various types of languages under standard set operations 





