

BIJU PATNAIK UNIVERSITY OF TECHNOLOGY,

ODISHA

Lecture Notes

On

Prepared by,

Dr. Subhendu Kumar Rath,

BPUT, Odisha.

THEORY OF COMPUTATION
MODULE - 2

UNIT - 3

 92

Turing Machine and
Recursive Functions

UNIT 3 RECURSIVE FUNCTION THEORY

Structure Page Nos.

3.0 Introduction 92
3.1 Objectives 93
3.2 Some Recursive Definitions 94
3.3 Partial, Total and Constant Functions 95
3.4 Primitive Recursive Functions 99
3.5 Intuitive Introduction to Primitive Recursion 102
3.6 Primitive Recursion is Weak Technique 112
3.7 The Techniques of unbounded Minimalisation,
 Partial Recursion and µ-Recursion 115
3.8 Summary 120
3.9 Solutions/Answers 121
3.10 Further Readings 123

3.0 INTRODUCTION

Let us stop for a moment and know that there really is another way (rather,
more ways) of looking formally at the notion of computation.

In the previous units, we have discussed the automata or machine models of the
computational phenomenon. The automata approach to computation is Operational in
nature, i.e., automata approach is concerned with the computational aspect of ‘how
the computation is to be performed’.

Here is Edward Bear, coming
downstairs now, bump, bump, bump,
on the back of his head, behind
Christopher Robin. It is, as far as he
knows, the only way of coming
downstairs, but sometimes he feels
that there really is another way, if
only he could stop bumping for a
moment and think of it.

Winnie-the-Pooh, 1926 A.A.Milne

In this unit, we will be concerned with Recursive Function Theory, which is a
functional or declarative approach to computation. Under this approach,
computation is described in terms of ‘what is to be accomplished’ in stead of ‘how
to accomplish’.

Each computational theory (rather each theory about any other phenomenon also)
starts with some assumptions, for example, about basic (undefined) concepts,
operational capabilities and a set of statements, called axioms and postulates,which
are assumed to be fundamentally true (i.e, assumed to be true without any argument).
In Automata Theory, the concepts like ‘state’ ‘initial state’, ‘final state’ and ‘input’ etc
are assumed to be understood, without any elaboration. Further, the capabilities of an
automata to accept an input from the environment; to change its state on some, or
even on no input; to give signal about acceptability/unacceptability of a string; are
assumed.

In Recursive Function Theory, to begin with, it is assumed that three types of
functions (viz ξ, σ and which are called initial functions and are described

under Notations below) and three structuring rules (viz combination, composition
and primitive recursion) for constructing more complex functions out of the already
constructed or assumed to be constructible functions are so simple that our ability to
construct machines to realize these functions and the structuring rules is taken as
acceptable without any argument. The functions, obtained by applying a finite
sequence of the structuring rules to the initial functions, are called Primitive
Recursive functions. However, with these simple functions and elementary

k

i

structuring rules, though it is possible to construct very complex functions yet, even
some simple functions like division are not constructible by the above mechanism.

 Two other well-known formalisms are (i) Church’s -Calculus and (ii) Curry’s Combinatory Logic

Therefore, another structuring rule, viz unbounded minimalization is added which
leads to the concepts of µ-recursion and partial recursion.

Recursive Function
Theory

Constructibility/Computability has been a pursuit of the mathematicians, since at
least the peak of Greek civilization in third/fourth century B.C. The intellectual
concern was about the constructibility of real numbers, i.e, for a given real number
α, to attempt to draw a line of length α, with the help of only an unmarked straight
edge and a compass, provided fundamental unit length is given. These attempts at
constructibility of real numbers, lead to some famous problems including the
problems of

(i) Trisecting an angle, (ii) Duplicating a cube and (iii) squaring a circle.

In this unit, the concept of constructible or computable, the latter being the more often
used term in Computer Science, is based only on our intuitive understanding of the
concept. Discussion of computable in the formal sense based on Church-Turing
hypothesis, is taken up in other units.

To some of the learners, the treatment of some of the topics may appear to be
undesirably too detailed. However, the details are justified in view of the fact that
the subject matter is presented from the point of view of the undergraduate
students, many of whom may not have studied Mathematics even at 10+2 level.

In order to facilitate faster coverage of the material by advanced learners, some
of the contents are placed in boxes which, without any loss of continuity, can be
skipped after first reading or even after a cursory glance.

Note: Exercises in the Block are numbered in one sequence; all other numbered
items like theorems, examples, lemmas, statements are taken together for another
numbering sequence.

Key words: recursive definition, partial function, total function, initial

functions, structuring rules, primitive recursion, bounded
minimalization unbounded minimalisation, partial recursion,

 -recursion.

Notations: N : the set of natural numbers including 0

 I : the set of integers

 ξ : the zero function which maps every element of the domain
 to 0.

 σ : the successor function, which maps each natural number n
 to n + 1

 : the projection function which maps the k-tuple
k

i

 (m1, …, mi, .., mk) to the ith component mi, for 1 i k.

 ┐ : negation

 : there exists

3.1 OBJECTIVES

At the end of this unit, you should be able to

 93

 For more details refer pp 297-299, A First Course in Abstract Algebra by J.B. Fraleigh, VII

edition, Pearson Education, 2003.

 94

Turing Machine and
Recursive Functions To explain the concepts of primitive recursion, -recursion and partial recursion

 alongwith other auxiliary concepts
 to tell the hierarchy between the classes of primitive recursive functions, total

computable functions, -recursive functions and partial recursive functions.
 use these concepts and techniques for generating functions of these classes

3.2 SOME RECURSIVE DEFINITIONS

We are familiar with the concept of factorial of a natural number n, denoted as n!,
with one of the ways of defining it as:

n! = n. (n – 1) .………….1 (1)

This is an explicit definition of n!.

However, the following is an implicit definition, called recursive definition, of
factorial.

0! = 1 and
n! = n . (n – 1)! for n 1. (2)

The definition (2) above of the factorial is recursive in the sense that in order to find
the value of factorial at an argument n, we need to find the value of factorial at some
simpler argument, in this case (n-1), alongwith possibly some other calculations.
In both the explicit and implicit definitions (1) and (2) above of n!,our approach is
functional or declarative in nature, where computation is described in terms of ‘what
is to be accomplished’ instead of ‘how to accomplish’.

Similarly, for a natural number n or a real number (or even a complex number) x, the
exponential xn is explicitly defined as

xn = (3)

43421
ntimes

xxx

Also, the exponential xn is recursively defined as:

x0 = 1
xn = x xn – 1, for a natural number n 1. (4)

Remark 1

(i) We may observe that non-recursive definitions (1) and (3) given above

respectively for n! and xn use the imprecise notation ‘…..’ . On the other
hand, the corresponding recursive definitions (2) and (4) use only precise
notations.

(ii) In (2) and (4), the definitions are given in terms of their own partial

definitions viz. n! in terms of (n – 1)! and xn in terms of xn – 1 . In this way, the
problem of evaluating n! is converted to the problem of evaluation of (n – 1)!.
This conversion of a problem to a less complex version of the problem may
be called reduction in case we are able to show that calculating (n – 1)! is
relatively less complex than calculating n!. If we look back on definition (2)
of n!, we observe that 0! is given as a definite number requiring no more
applications of the definition of factorial to another number. And reaching 0!
from (n —1)! takes lesser number of applications of (2) than reaching 0!
from n!. Thus, we can see that the problem of calculating n! is reduced
through successive applications of the definition of factorial as given by (2)

and is terminated when 0! is replaced by 1. Exactly on the similar lines, the
problem of calculating xn is gradually reduced by the application of definition
(4) and is terminated when x0 is replaced by 1.

Recursive Function
Theory

3.3 PARTIAL,TOTALANDCONSTANT
FUNCTIONS

As mentioned under Remarks (ii) above, the factorial of n is defined in terms of only
the factorial of another, but smaller, number. However, this idea of defining a
function in terms of only itself may be further generalized when a function f may
be defined, in addition to in terms of f itself, possibly in terms of some other
functions also. Another way in which the idea of recursion as explained above is
generalized, is through extending the scope of recursive definitions to partial
functions (to be defined). Various generalizations, including the one given below,
lead to the definitions of primitive recursion and partial recursion.

The idea of functions from N to N, can be generalized to functions from Nk to Np
where
k = 0, l, 2, …….
p = 0, l, 2, ……

Example 2: of Functions from Nk Np where k > 1

Plus: N N N, with
plus (n, m) = n + m, (5)

Mapping every pair of integers of N to integers in N.
E.g., Plus takes the ordered pair (3, 2) and returns 5. Similarly, Plus takes the ordered
pair (4, 0) and returns 4.

Similarly, we may define
PROD: N N N, with

PROD (m, n) = m n for m, n N. (6)
And we may define
Exp (m, n) = mn for all m , n N (7)

Example 3: of a function from Nk to Np where k > 1 and p > 1:

Plus-Prod: N2 N2, such that
Plus-Prod (m, n) = (m + n, m n) = (Plus (m, n), Prod (m, n)) (8)

In other words, the function Plus-Prod takes a pair of elements m and n of N and
maps this pair (m, n) to a pair of integers, viz, (m + n) and (m . n)

Also, we may define the function
Plus-Prod-Exp: N2 N3 with
Plus-Prod-Exp (m, n) = (m + n, m n, mn)

 = (Plus (m, n), Prod (m, n), Exp (m, n)) (9)

Here the ordered pair (m, n) is mapped to the ordered triple of three integers, viz,

(m + n), (m . n) and mn

Example 4: of function from Nk Nq Np where k, q, p N
A somewhat similar but distinct function say
New-Plus-Prod-Exp: N2 N2 N

 95

 may be defined as

 96

Turing Machine and
Recursive Functions

New-PIus-Prod-Exp (m, n) = ((m+n, m n), mn))
= (Plus-Prod (m, n), Exp (m, n)) (10)

Please note the minute difference between Plus-Prod-Exp and New-Plus-Prod-Exp

Remarks 5

In the definitions under (5) to (10) above, among other facts, we may observe that
earlier defined functions may be used in defining more complex functions. Our ability
to define more and more complex functions in terms of earlier defined functions,
plays a very important role in the study of primitive recursion and partial recursion
etc, which are generalizations of the concept of recursion discussed in defining n! and
xn etc.

The recursive definitions of Plus, Prod etc. will be discussed later.

The constant Functions:

Though it is not intuitive, yet we may have functions on N which do not require any
argument.

Consider the function

C5 : N N such that
C5 (n) = 5, for all n N (11)

In view of the fact that the value 5 is independent of n in (11), we can very well
write (11) as

C5 () = 5, (12)

Given the fact that we are considering domains of functions as Nk for k N, we
extend our notation for functions from Nk N to include functions from N0 N, and
rewrite (11) as

C5 : N0 N such that
C5 () = 5.

Also, in order to include in the notation itself the fact that the function takes zero
number of arguments, we may use the notation C0 instead of C , i.e.,

C0
5 = 5 (13)

Generalizing the constant function C0

5 we may define

C0
q : N0 N such that

C0
q () = q, for some fixed integer q in N.

Further, we can extend the set of constant functions to include the functions

Ck
q : Nk N such that

Ck
q (n1, n2, …, nk) = q,

for n1, n2, …, nk N and for some integers k and q in N. (14)

Partial Function

We are already familiar with the concept of function in the mathematical sense.
Informally, for two given sets X and Y a function
 f : X Y
is a rule that associates to each element x of X a unique element y of Y. Here X is
called the domain of the function f and Y the codomain of f. (15)

 Recursive Function

Theory However, in order to extend the class of computable functions beyond the class of
primitive recursive functions (to be defined), to parial-recursive functions (to be
defined), we relax the condition ‘for each element x of X’ in the definition of function
leading to the following definition.

Partial Function: A partial function is a rule

f: X Y
that associates elements of Y to elements of X in such a way that, for y1 Y if there
exists an element x1 of X s.t. f(x1) = y1, then there is no element y2 of Y, with
y1 y2, s.t. f(x1) = y2. (16)

However, there may be some elements x of X for which there may not be any y such
that f(x) = y. In other words, in the definition of a partial function, it is not necessary
that for each element x of X, there must be an element y of Y that corresponds to x
under f. However, for an element x of X, if there is an element y1 of Y that
corresponds to x under f, then there can not be a y2 in Y with y1 y2 such that y2 also
corresponds to x under the partial function under consideration.

Example 6: We consider a rule of correspondance Quot: N N N that takes a pair
(m, n) of integers and associates an integer q, if it exists, s.t. m = nq + r with
0 r < n. Now if n =0 then no r with 0 r < 0 exists implying Quot (m, n) is not
defined for n = 0. Thus Quot is a partial function, but not a function or a total function
as is going to be defined below.

Total Function: If a partial function satisfies the condition given in (15), i.e., it is a
function in the conventional sense, then it will be called Total Function. The
adjective total is added to a function in conventional sense in order to differentiate the
function in conventional sense from the partial function which satisfy condition (16)
but do not satisfy the condition (15) above.

Remarks 7

In this block, unless it is mentioned otherwise we will be dealing with functions
(partial or total), the domains of which are only of the form Nk = N x … x N for k N.

Functions with domain Nk are called k-place functions.

Also, unless it is mentioned otherwise, the functions under consideration are restricted
to the ones that have N as their codomain. Our consideration of only the functions of
the form f : Nk N, is not a major restriction, because using some encoding
techniques like Gödel Numbering, any domain can be expressed as a subset of the set
Nk.

Why we need partial functions?

We know there are infinitely many possible sets which can be represented by finite
means. For example the infinite set N is finitely representable by the following two
statements:

(i) 0 is a member of N and
(ii) if n is a member of N then so is (n) (i.e, (n + 1)).

And for each such non-empty set X, at least one function, say the identity function

 97

I : X X, can be defined. Also, for such sets X, Y, Z etc., we can think of new sets
which may be the product sets, for example X Y, Y Z X, just to name a few.
Each of these product sets itself can be the domain (or even the range) of some
functions.

 98

Turing Machine and
Recursive Functions

Thus, unless we use an ingenious method of the type described below, the general
discussion of functions would involve consideration of infinitely many types of
domains and codomains, even if, each of these may be finitely representable.

By an appropriate encoding, it can be easily seen that each countable set can be
thought of as either Nk or as a proper subset of Nk, for some
k = 0, 1, 2, ----

For example

The set X={a, b, c, …., z}can easily be thought of as a subset of N, by using the
following encoding
a 1
b 2
 .
 .
 .
 .
z 26

Thus, functions, in stead of being considered between arbitrary but countable domains
and codomains, may be considered as functions of the form P Nm, where P either
equals an Nk or is a proper subset of Nk, for suitable integers k and m.
However, any function f: X Nm for X = {a, b, ..., z} above when considered after an
encoding as a function f: N Nm, cannot be total, because f (m) for m 27, is not
defined. In general, any function with a finite domain when considered as a function
between the encoded sets NK and Nm must be strictly partial.
Also, for large number of functions involved in the solution of everyday problems,
each has a finite domain.

Thus, in order to simplify the discussion of functions with arbitrary but countable
domains and ranges, it is possible, through appropriate encoding, to consider such
a function as a function of the form Nk Nm provided functions are allowed to be
partially defined on the domain Nk.

Examples 8: of total and Partial Functions

(i) The successor function S: N N, s.t., S(x) = x + 1 for all x є N. The function

S is a total function from† N to N. Successor function plays an important role
in the recursion theory. Therefore, it is useful to know that even the notation
is used to denote the successor function.

(ii) The function
 Plus: N2 N such that for all x, y N.
 Plus (x, y) = x + y,
 is also a total function

(iii) However, the function
 Minus: N2 N such that
 Minus (x, y) = x – y for x y in N,
 is only a partial function, which is not a total function.
 In other words, Minus is a strictly partial function.

† While talking of total or partial functions, it is understood that the domain is of the form Nk.

 However, a slightly different function say Minus_Int becomes total, if we

allow
Recursive Function

Theory
 Minus_Int: N2 I,

 with I, the set of integers as codomain and the rule of correspondance given by
 Minus_Int (x, y) = x – y for x, y N. (in stead of, for just x y)
 However, as mentioned earlier, we are restricting to only functions of the form
 f : Nk N.

 Therefore, if required, we discuss only the strictly partial function Minus.

 However, we will discuss a scheme of discussing Minus-Int as a function from

N2 to N2.

(iv) corresponding to the partial function minus, there is a well-known function

 monus, also denoted as and defined as

Monus (x, y) =
y x if 0,
y x if y -x

 Monus (x, y) may also be written as x y.

(v) We define the function div from N2 to N with div (x,y) = z, only for those pairs

(x,y) of elements of N for which x = y.z for some z from N. Then div is strictly
partial.

(vi) The Square-Root function, named as say SQRT,
 (also denoted by) and given by
 SQRT: N N
 such that for x, y N,
 SQRT (x) = y if y2 = x.

Again SQRT is a strictly partial function.

After having provided the necessary background, we explain the concept of primitive
recursive functions the set of which forms a proper subset of the set of total functions.
As the discussion of general partial recursive functions requires introduction of some
more background material, the general partial recursive functions will be discussed
later.

We mentioned earlier that, each of the approaches to computation starts with some
elementary entities of some domain and some structuring rules, where the rules are
easily applicable to form more and more complex entities of the domain.

3.4 PRIMITIVE RECURSIVE FUNCTIONS

The set of primitive recursive functions is obtained by three types of initial functions
(which are elementary primitive functions) and three structuring rules for
constructing more complex functions from already constructed functions.

 99

 In the literature, two of the three structuring rules are combined in one rule and hence, in

most of the literature, number of structuring rules is mentioned as TWO and not THREE.
However, then presentation of the subject matter becomes too complex from the point of view
of undergraduate students.

 100

Turing Machine and
Recursive Functions

Three types of initial functions are

(i) The 0-Place zero function ξ from N0 to N such that ξ() = 0 (19)
(ii) The successor function
 : N N
 such that
 (n) = n + 1 for all n N. (20)
 (iii) The Projections: We know that for k 1, Nk is the set of all k-tuples
 of the form n = (n1, n2, …, ni, …, nk) for 1 i k.

 For each fixed i, with 1 i k, we may define a function, denoted by ,

with

k

i

 : N

k

i
k N such that for n = (n1, n2, …, ni, …, nk)

k

i
n = (n

k

i 1, n2, … ni…., nk)

 = ith component of (n1, n2, … ni….., nk) = ni (21)

Thus, we have defined k projection functions, each with domain Nk, viz.

k

1
, …, and each of which maps to N.

k

2
, k

i
,...., k

k

 For the sake of explanation, we have (2, -7, 12, 4, 3) = 12
5

3

 Finally, the zero-place zero function ξ, the successor function and the

projection function for k N, and i N, with 1 i k, are the only

initial functions, which are also called elementary primitive functions.

k

i

Ex.1) Prove that each of the elementary primitive function viz zero function ξ,

successor function σ and each of the projection functions , 1 i k, is

a total function.

k

i

In the very beginning itself, it was mentioned that computability of functions is a
major concern in the Theory of Computation.

In this context, consider the following

Statement 9: The initial functions ξ, and are all computable .
k

i

The statement is not a theorem, the truth of which can be established through a
proof. The statement is axiomatic in the sense that it should not only be intuitively
correct but should be fundamentally true in the sense that it can not be otherwise. In
spite of the above, we give an informal argument in support of the apparent truth of
the statement. The computability of the initial function ξ is about our capability of
constructing a machine to perform the activity of writing the symbol 0. This
capability can be assumed without any doubt. Similarly, our capability of
constructing a machine which returns (n +1) for each input n, can also be assumed
without any doubt. Hence, we may assume that the successor function σ is
computable.
Finally, computability of a projection function say , is about the designing of a

k

i

machine capable of scanning a k-type say m = (m1, m2, ……….mi,……….mk)
starting with the first component m1 and go on moving to the right till ith component

 Computability in the formal sense of Church-Turing Thesis has been discussed in other unit.

Here computability is taken as an intuitive informal notion.

mi is scanned and then writing mi as output. In view of the type of machines
available, it can be safely assumed that we can construct a machine to execute these
activities required for a projection function.

Recursive Function
Theory

Next, we define the three structuring rules which are known as

(i) combination
(ii) composition and
(iii) primitive recursion.

Remarks 10

Before providing the definitions for the above–mentioned structuring rules, it may be
stated that by applying these structuring rules, to begin with, to the initial functions
and then by successive applications of these structuring rules to the functions already
obtained by previous applications, we can construct quite complex functions

(I) Combination as a structuring rule

The combination of two functions
 g: Nk N
 h: Nk N
 is a function
 f: Nk NxN
 such that for (n1,…..nk) = n ε Nk,
 f(n) = (g (n), h (n)). (22)
 Then, the function f is denoted by g x h and is called combination of g and h.

Remarks 11

In stead of g: Nk N and h: Nk N, we may take g: Nk Nm and h: Nk Nn, and
then we get a function f: Nk Nm+n from the definition of f given by (22).

(II) Composition as a structuring Rule

Let
g: Nk Np and
h: Np Nq for k, p, q N
be two given functions.
Then we define a function
f : Nk Nq

as follows:
if (n1, n2, … nk) Nk and
g (n1, n2, … nk) = (m1, m2, … mp) Np

 Further, if
h (m1, m2, … mp) = (t1, t2, … tq) ε Nq
then
f: Nk Nq is such that

f (n1, n2, … nk)
= h(g (n1, n2, … nk))
= h (m1, m2, … mp) = (t1, t2, … tq) (23)

The function f, so defined, is called the composition of g and h and is denoted by h.g
(Some authors use the notation g·h instead)

 101

Examples 12:

(i) If g : N N is given by

 102

Turing Machine and
Recursive Functions

 g(n) = n2 and
 h : N N is given by
 h(n) = (n + 3)
Then we define a function
 f : N N such that
 f = h·g, then
 f (n) = h (g (n)) = h(n2) = n2 + 3 for all nεN
 (ii) Functions g and h are as given in Example 12 (i) above. Let us define a function
 k: N N
 such that k = g·h, then
 k(n) = g(h(n))
 = g(n+3) = (n + 3)2
 for all n ε N

Ex. 2) What is the result of applying the function to
2

2

2

1

4

1

4

4

four tuple (8,7,4,2)?, where (f X g) (x) = (f(x), g(x))

Ex. 3) A function f: N N is defined as
 f(0) = () and
 f(y) = f (y – 1)
 What is the value of f(4)?

Remarks 13

As mentioned earlier the two structuring rules discussed so far, viz, combination rule
and composition rule, are presented in the literature as a single rule, and is generally
called as composition rule, which is actually a generalization of our composition and
combination rules. We call this rule as Generalised Composition Rule and discuss it
below:

Let the function

g: Nk Np and
h1, h2,……, hk are k functions with
hi : Nm N, for i = 1,2,……, k

Then we define a function

f: Nm Np such that for n = (n1,…..nm) Є Nm
f(n) = g (h1 (n), h2 (n), ….., hk (n)). (24)

Then f is said to be obtained from g, h1, h2,……, hk by generalized composition or if
there is no confusion just by composition.

Ex.4) Show that the combination rule given by (22) and composition rule given by
 (23) are special cases of the generalized composition rule given by (24).

Next, we consider the third structuring rule, viz Primitive Recursion. As the rule
requires comprehensive discussion, we discuss it in an independent section below.

Recursive Function

Theory 3.5 INTUITIVE INTRODUCTION TO PRIMITIVE
RECURSION

Earlier, we considered the recursive definition of n! for n N as:
0! = 1 and
n! = n ((n –l)!) for n l.

Also, we considered for recursive definition of the exponential xn of x, a real number
and n N as:

x0 = 1 and
xn = x xn – 1 for n 1.

In order to understand the generalization of the recursive definitions considered
above, let us consider the following example.

Example 14: As an Intuitive Introduction to Primitive Recursion

Let us consider a special kind of tree that initially has only one branch, which is
treated as a new branch. At the end of each year, out of each new branch, m new
branches grow out (we call m as the branching factor of the tree). And the branch,
out of which branches grew out once, is no more a new branch. We define a function
say f which gives the total number of branches in the tree after n years, assuming the
branching out process continues for ever (or at least for more than n years) at the rate
of m branches per year.

It is clear that the function f depends on both m and n. In order to facilitate the
understanding of the process of getting f as a function of m and n, let us initially
consider m as a constant. Also to begin with, we consider only the function b(n) that
returns the number of new branches that are generated at the end of the nth year for
n = 1, 2, ……. Subsequently, b (n) shall be used in computing f (m, n), where

b(1) = After one year, number of new branches = m
b(2) = After two years, number of new branches. = m . b (1) = m . m = m2
b(3) = After three years, number of new branches = m (number of new
 branches after 2 years) = m3.

Continuing like this, we get,

b(n) = After n years, number of new branches
 = m(number of new branches after (n – 1) years)
 = m b (n –1) = mmn–1 = mn

Next, we consider f(m, n), the number of all branches at the end of n years.
f (m, 1) = Total Number of branches after one year
 = old branches at the end of one year + new branches generated at the
 end of the first year, i.e.,
f(m, l) = l + m
f (m, 2) = Total number of branches after two years

 = Old branches at completion of two years + New branches generated
 at the end of second year, i.e.,

f (m, 2) = f(m, 1) + m2

f (m, n) = Continuing like this, total number of branches after n years
 = Total number of branches after (n – 1) year + New branches at the end
 of the nth year, i.e,

 = f(m, n –1) + m b(n –1), i.e,
f(m, n) = f(m, n – 1) + mn (25)

 103

For a short while, if we denote f(m, n – 1) as t
 Then (25) becomes

 104

Turing Machine and
Recursive Functions

f(m, n) = t + mn, a function of m, n and t, say

 = h (m, n, t), for some function h : N3 N.
Summerising, we get
f(m, n) = h (m, n, t), for some function h: N3 N.
 Replacing t by f (m, n-1), we get
f(m, n) = h(m, n, f(m, n – 1))

Thus f(m, n), the number of all branches immediately on completion of n years can
be defined as:
f(m, 0) =1 = m0

f (m, n) = h (m, n, f (m, n – 1)) (26)
where
 h (m, n, t) = mn + t

In order to further generalize the concept of recursion, we consider the same
problem with a little difference by taking a new starting time (i.e., zeroth year) for
the problem of counting of the number of branches when the tree already has, say,
1+ m + m2 + m3 branches. (i. e., the initial branch is already 3 years old) and let
J (m, n) denote the number of total branches after n years of the new starting time,
where m is the branching factor.

Then J(m, n) is defined as

J (m, 0) = 1 + m + m2 + m3, which is some function say g(m) of m, i.e.,
J(m, 0) = g(m) and
J(m, n +1) = J(m, n)+mn+4,
which is some function say L of m, n and J (m, n), i.e,
J (m, n + 1) = L (m, n, J (m, n)).
Summarizing, the function J (m, n) may be defined as
J (m, 0) = g(m) and (27)
J (m, n +1) = L (m, n, J(m, n)), (28)

for some function g of m and another function L of m, n and J (m, n).
The above discussion can be generalized still further when instead of one tree,
initially, we have k trees T1, T2, … Tk, s.t. for the ith tree Ti the branching factor is mi
for i = 1, 2, ..., k.

Also, we assume that different trees started growing (i.e., having their first branches)
in different calendar years. After all these trees have started growing, some calendar
year is taken as starting or zeroth year for the purpose of counting the number of
branches in all the trees taken together.

Then (27) and (28) can be rewritten as

Ji (mi, 0) = gi (mi)
Ji (mi, n + 1) = Li (mi, n, Ji (mi, n)) for i = 1, 2, ..., k. (29)
(where gi (mi) denote the number of branches, in the zeroth year, of the ith tree whose
branching factor is mi)

Then total number of branches on all the k trees, after completion of n years after
the starting year, may be defined by a function F of m1, m2, … mk, and n as follows:

F(m1, m2, … mk, 0) = g1(m1) + g2(m2) + … + gk(mk) = G (m1, m2 ….., mk),
for some function G of m1, m2, … mk, and
F(m1, m2, … mk, n + 1) = J1 (m1, n + 1) + J2 (m2, n + 1) + …. + J (mk, n+1) (30)
But by (29), each Ji (mi, n +1) is a function of Ji (mi, n)
If m = (m1, m2, …., mi, …., mk)

Then in view of these facts, i.e, Recursive Function

Theory
(i) F (m , n + 1) is a sum of Ji (mi, n + 1) by (30)

(ii) each Ji (mi, n +1) is a function of Ji (mi, n) in addition to being a function of
 mi and n by (29)

(iii) the sum of Ji (mi, n), 1 i k, is an expression which can be obtained by

replacing n + 1 by n in the R.H.S of (30) and hence, by replacing (n + 1) by n
in the L.H.S of the equality (30),

this sum of Ji (mi, n)’s must be of the form F (m , n)
In view of (i), (ii) & (iii) above, F(m , n + 1) is some function H of F (m , n) in
addition to being function of mi’ s and n

Then the above definition of F may be rewritten as

F (m , 0) = G (m) and
 F(m , n + 1) = H(m , n, F(m ,n)) (31)

This is exactly what, in formal sense, we say that F is obtained from G and H by
primitive recursion. Restating the above, we get the formal
Definition: Primitive Recursion
For k 0, a function
f: Nk+1 Nm
is said to be constructed using primitive recursion from the functions
 g : Nk Nm and
 h : Nk+m+1 Nm,
if, for x ε Nk and y ε N,

 f(x , 0) = g (x) and
 f (x , y +1) = h (x , y, f (x , y)), (32)

The above discussion about three initial functions viz. the zero-place zero function
 (), the successor function σ and the projections and about the three

structuring rules viz. combination, composition given by the discussion preceding and
including (22), (23) and primitive recursion given by (31), leads to the following
definition:

k

i

Primitive Recursive Function: A function f is primitive recursive function if (and
only if) either

(i) it is one of the initial functions viz. ξ (), or one of the projections

 , i k, or
k

i

(ii) it is obtained by application of some finite sequence of structuring rules viz

combination, composition, and primitive recursion to the initial functions.

Remark 15

 105

 It is implied in the above definition that if a function f is obtained by a finite sequence
of application of structuring rules including primitive recursion to some functions (not
necessarily initial functions) say g1, g2, … gk, each of which has been obtained earlier
by application of some finite sequence of combination, composition and primitive
recursion to some of the initial functions, then F must be primitive recursive. The
implication follows from the fact that F can be obtained from initial functions by first
applying sequences of combination, composition and primitive recursion to obtain

 106

Turing Machine and
Recursive Functions

each of g1, g2, … gk, and then applying a sequence of combination, composition and
primitive recursion to get f from g1, g2, … gk.

Examples 16: All functions considered below are from Nk to N, for some k N.

Example 16(i): The well-known binary function plus (m, n) = m + n is primitive
recursive, because

Plus (m, 0) = (m)
1

1

Plus (m, n + 1) = (m, n, plus (m, n)), for n 0 (33)
3

3

Example 16 (ii): The well-known binary function Product (written here as prod) and
given by
prod (m, n) = m n is primitive recursive, because
 prod (m, 0) = ξ ()
 prod (m, n + 1) = plus ((m, n, prod (m, n)), (m, n, prod(m, n))) (34)

3

1

3

3

As plus has already been shown to be primitive recursive, therefore, prod is also
primitive recursive.

Example 16 (iii): In this example we consider simple funtion say int-plus whose
domain and codomain are not N but I, the set of all integers including negative
integers and zero. We show that the function
 int-plus : I x I → I
is primitive-recursive.

The proof is based on the fact that Each integer can be thought of as a member of N2,
for example, 5 may be thought of as (6, 1) and –5 as (1, 6). In general, (m, n) є N2
denotes the integer m –– n.

Then the function int-plus : I x I I can be thought of as

 int-plus : (N x N) x (N x N) N x N
 Such that, if (m1, n1) and (m2, n2) ε N x N then
 int-plus ((m1, n1) , (m2, n2)) = (m1+ m2, n1, n2)
 = (plus (m1, m2), plus (n1, n2)) (35)

Plus is already shown to be primitive recursive and combination of two primitive
recursive functions (viz plus and plus) is primitive recursive. Hence the above
equation (35) shows that int-plus is a primitive recursive function.

Example 16(iv): The factorial function

 f(n) = n! for nεN,
is primitive recursive.

The proof follows from the following argument based on Principle of Mathematical
Induction:

Base Case:
 for n = 0
 f(0) = 0! = 0 = ξ ()

Induction Hypothesis:
Let f(p) be primitive recursive

Induction step: Recursive Function

Theory f(p + 1) = (p + 1)! = (p!)· (p+1) = f(p)· (p + 1) = prod (f (p), p + 1).

Using Induction Hypothesis and the fact that product is primitive recursive, f (p +1) is
primitive recursive.

Generalizing the above example, we get the

Theorem 17:
Let
 g: Nk+1 N
be primitive recursive.
Then, for an m ε N, the function
f: Nk+1 N
given by

f(n , m) = g(
m

i 0

n , i) = g(n ,0)·g(n ,1)···g(n ,m) (36)

with n = (n1,n2,…nk) ε Nk,
is primitive recursive

Proof:

We prove the result by Principle of Mathematical Induction on m

Base case:
When m = 0, by (36), we get
 f(n , 0) = g(n ,0).
As g is given to be primitive recursive, the base case follows

Induction Hypothesis:
for m = p we assume

 f(n , p) = (g(
p

i 0

n , i))

is primitive recursive

Induction Step:
 Consider

 f(n , p +1) = (g(
1

0

p

i

n , i)) = (g(
p

i 0

n , i))· g(n , p + 1)

 = f(n , p) · g(n , p + 1) = prod (f (n , p), g (n , p +1)).
In view of the Induction Step and the fact that both g and product are primitive
recursive, we get f(n , p + 1) is primitive recursive.

Definition:The function f, given by (36) above, is said to be obtained from g
by Bounded Product. Thus the above theorem may be restated as

Theorem 17:
Bounded Product of a primitive function is primitive recursive

Ex.5) Show that each of the following, earlier defined, functions is primitive

recursive:
(i) Plus-Prod (given by equation(8))

 107

(ii) Exp
(iii) New-Plus-Prod-Exp (given by equation (10))

 108

Turing Machine and
Recursive Functions

Ex. 6) Show that the predecessor function pred: N N defined as

 pred(n) =
1 n if 1
0 n if 0

n
 is primitive recursive.

We recall the definition of constant functions:

For each k 0 and each j 0, a constant function C maps each k-tuple k
j

 (ml, m2, ... mk) to the fixed integer j, i.e,
k
jC : Nk N such that C (mk

j l, m2, ..., mk) = j, for all (m1, m2, …, mk) ε Nk.

We show that are all primitive recursive functions. To begin with, consider

the
ck

j

Lemma 18: Each of the functions C for j 0 is primitive recursive. 0

j

Proof: The proof is presented in two parts:

Case (i) C is the function which maps a zero-tuple to the constant 0. It is primitive
recursive, because

0
0

0
0C =

Case (ii) Each of the functions for j 1 is primitive recursive 0

jC

As = 1 = σ . ξ, c0

1

therefore, c is primitive recursive 0

1

Again as = . c c0

2

0

1

and is already shown to primitive recursive, therefore, is primitive recursive. c0

1
0
2C

We use mathematical induction on j to show C is primitive recursive for all j. 0
j

Base case. For j = 0, we have already shown, that is primitive recursive. c0

0

Induction Hypothesis: Let is primitive recursive, for any integer m. 0

mC

Induction step

0
1mC = By induction hypothesis, is assumed to be primitive recursive and

 is primitive recursive and composition of two recursive functions is primitive
recursive, therefore, C is primitive recursive.

0
mC cm

0

0
1m

Hence by Principle of mathematical induction, is primitive recursive, for all 0
jC

j N.

The lemma proves as primitive recursive only for k = 0. ck

j

The proof for the general integer k follows from the

Theorem 19: The constant functionC , for k 0 and j 0, is primitive recursive. k

j

Proof: We prove the theorem by induction on k.

Base case: When k =0, the proof follows from the lemma, in which we proved that

 is primitive recursive for all j. co

j

Recursive Function
Theory

Induction Hypothesis: Assume is primitive recursive, for all integers j and all

integers i p.
ci

j

Induction step:
Let m = (m1, m2, ….., mp) ε Np
Now (1p

jC m , 0) = C (p
j m), each of the two sides of the equality, is equal to j

1p
jC (m , n + 1) = (

2

2

p

p m , n, C (1p
j m , n))

Hence, the theorem is proved.

Let us try the following exercises

Ex. 7) The monus function defined earlier as

monus (m, n) =
 otherwise, ,0

n if n,- mm

 is primitive recursive.

Ex. 8) Show that following function

eq (m, n) =
 else ,0
andn if ,1 m

is primitive recursive.

Ex. 9) Show that the function minus: I x I I, with
 Minus (m, n) = m-n for all m, n ε I,
where I is the set of all integers, is primitive recursive

Ex. 10) Show that the function

 ┐eq (m, n) =
n m if 0,
n m if 1,

 is primitive recursive

Ex. 11) Show that for i εN, characteristic functions

 Ki (n) =
otherwise 0,

i n if 1,

 is primitive recursive

Ex. 12) Show that the function
 f: N N given by

 f(n) = 12

otherwise en wh8
5 n when
0 n n whe7

 is primitive recursive.

 109

 110

Turing Machine and
Recursive Functions

Statement 20: The structuring rules viz combination, composition and primitive
recursion produce computable functions from computable functions.

Like Statement 9 earlier, no formal proof of the statement is possible. As earlier, we
present an informal/intuitive argument in support the apparent truth of the
Statement (20).

(i) Composition Rule produces computable functions from computable

functions
Let
 g : Nk Nn and
 h : Nk Nm
be computable functions.
Then value f(n) of n = (n1, n2, ….., nk) ε Nk
under the function f which is the combination function of g and h, is given by
(g (n), h (n))
In other words, if the values g (n) and h (n) are computable then the additional
computational effort required is that for putting these values between a pair of
parentheses separated by a comma. However, a machine having these additional
capabilities, in addition to the capabilities of the already existing machines for
computing g (n) and h (n), can easily be constructed. The above informal argument
supports the claim that combination rule produces computable functions from
computable functions.

(ii) Composition Rule produces computable functions from computable

functions.
Let
 g: Nk Nm and
 h : Nm Np
be computable and

x = (x1,x2, ….., xk) ε Nk,
then g being computable produces through a computational process, some m-tuple say
y = (y1, y2, .., ym) ε Nm,

such that g (x) = y

Next, h is computable function with domain Nm and y ε Nm.

Therefore, the process of getting h(y) from y is computable.

 Thus, if we assume computational capabilities already exist for computing g (x) and
 h (y), then for computing the value h(g(x)) under the composition function of g and
h, the only additional computational capability required is that of passing the value
g (x) as an argument to h. This capability can reasonably be assumed.
Thus, the computability of the composition structuring rule is justified.

Next, we present an argument for the claim that the structuring rule primitive
recursion gives computable functions from computable functions.
Let us recall that a function
 f : Nk+1 Nm
is said to be constructed using primitive recursion
from the functions
 g : Nk Nm and
 h : Nk+m+1 Nm,
if, for x ε Nk and y ε N,
 f(x , 0) = g (x) and

Recursive Function

Theory
 f (x , y +1) = h (x , y, f (x , y)), (32)
((32) was used to denote this equation once earlier also).

The claim about computability of f as defined above, is justified by using the
Priniciple of Mathematical Induction on the argument y of f (x , y).

Base case, For y = 0, as g is computable, therefore, for x ε Nk, g (x) and hence
f (x , 0) is computable.

Induction Hypothesis: Let us assume that for x ε Nk, and for some y ε N, f (x , y) is
computable.

Induction Step: In view of the assumption under Induction Hypothesis and the fact
that h is given to be computable; for h (x , y, f (x , y)) and therefore, for f (x , y + 1)
to be computable, the only additional computational capability required is that of
passing the value of f(x ,y) as an argument to h. This capability can be reasonably
assumed.

Thus, we have informally argued in favour of the truth of statement.

Theorem 21: Each primitive recursive function is a total function.

Proof: We know primitive recursive functions are, by definition

(a) either initial functions
(b) or the functions obtained by some finite number of applications of the

three structuring rules to initial functions.

First, we show initial functions are total:
By definition

(i) The Zero function: : N0 N, is such that () = 0
 Thus is defined for all elements of its domain N0, which is by

definition, empty. Thus, is a total function.

(ii) the Successor function : N N is such that
 (x) = x + 1, for all x ε N, the domain.
 Thus, successor function is also defined for all elements of its domain N. Thus

 is a total function.

(iii) the projection with i, k N, and i k.

k

i

 is s.t. if x = (x1, x2, …. xi, …, xk) Nk

 then
k

i
(x) = xi for all x Nk, the domain.

Thus each of the initial functions, is a total function.
Next, we establish that the structuring rules lead from total functions to total
functions.

(i) The Structuring Rule: Combination
 Let g: Nk Nm

 h: Nk Nn
 . be two total functions, for which f: Nk Nm+n is such that
 f = g X h

 111

 Then by definition of total, for each x = (x1, x2, ... xi,... xk) Nk

 y = (y1, y2, ... yi,... yk) Nm such that

 112

Turing Machine and
Recursive Functions g(x) = y and

 z = (z1, z2,….zi,…,zn) ε Nn such that
 h(x) = z
 Thus for each x ε Nk
 (g(x), h (x)) ε Nm+n
 Therefore f = g x h is total, and hence, combination of two total functions is

total.

(ii) The Structuring Rule: Composition
 Let functions
 g: Nk Nm and
 h: Nm Nn
 be total and f = h·g
 Then by definition of total, for each x = (x1, x2, ... xi,... xk) Nk
 y = (y1, y2, ... yi,... yk) Nm such that

 g(x) = y and

further, as h from Nm to Nn is a total function, therefore, for each y in Nm, there is a

z in Nn such that h(y) = z .

But then for each x NK, z Nn

 such that (h ·g) (x) = h(g(x)) = h(y) = z Nn
Therefore, f = h·g: Nk Nn is a total function if g and h are total functions.

(iii) The structuring rule: primitive recursion
 Let f: Nk + 1 Nm be a primitive recursive function which is obtained from the

two already defined total functions viz
 g : Nk Nm and
 h : Nk+m+1 N,
 as follows:
 f(x , 0) = g(x) and (37)
 f(x , y + 1) = h(x , y, f(x , y)) for x Nk (38)

Let z = (x1, x2, … xk, xk+1) be an arbitrary element of Nk+1. We show by induction on
the (k + 1) th component of z that f is total, given that both g and h are total.

Base Case: When xk+1 = 0
Then from (37), using the fact that g is total we get that f is defined for all
 (x1, x2, … xk, 0) with (x1, … xk) Nk

Induction Hypothesis: Let us assume that for all x = (x1, …,xk) Nk and for y εN, f
is defined for (x1, … xk, y).

Induction step: Using the above induction hypothesis and the fact that h is total, the
R.H.S of (38) above is defined for all x and y. Hence the L.H.S. of (38), i.e,
f(x , y+ l) is total on Nk+1.

Hence, primitive recursion leads from total functions to total functions.
Thus, we see that all primitive recursive functions must be total and, as mentioned
earlier, computable also.

Recursive Function

Theory 3.6 PRIMITIVE RECURSION IS WEAK
 TECHNIQUE

It is natural to ask whether class of all primitive recursive functions cover all
computable functions or not? Or in other words, every function, which can be
accepted as computable, is also primitive recursive?

The answer to the above is no, which is substantiated by the following

Theorem 22: (i) There are computable functions which are not primitive recursive,
and even,

(ii) there are total computable functions which are not primitive

recursive.

Proof: In order to establish the above, it is sufficient to give an appropriate example
for each of the two results.
Example for Theorem part (i) We have established that a primitive recursive function
is necessarily total. Hence a function which is not total can not be primitive
recursive.

Consider the following function, which has been discussed earlier.
Quot : N N N
s.t.

Quot (x, y) =
 0 y if undefined

y k 0for
k z .y x and 0 y if z

is not total, i.e., is strictly partial. Hence Quot can not be primitive recursive function.
Example for Theorem part (ii)

The Ackermann’s function A : N N N defined below is total and computable
function but not primitive recursive.

 A (0, y) = y + 1
 A (x + 1, 0) = A(x, 1)
 A(x + 1,y + l) = A(x, A(x +1, y))

The proof, that A is total and computable but not primitive recursive, is beyond the
scope of the course.

Existence Theorems & Their Constructive/Nonconstructive Proofs

Many a theorem is an assertion about the existence of objects(s) of a particular type.
For example, the assertion, CUBE_SUM: ‘There is a positive integer, which can be
written as the sum of two cubes of positive integers in two different ways’, if proved
true is an example of an existence theorem. There are two ways of proving an
existence theorem viz through

(i) a constructive proof
(ii) a non-constructive proof.

 113

A constructive proof of an existence theorem is actually about showing an object of
the required type. E.g, writing

 114

Turing Machine and
Recursive Functions

1729 = 103 + 93 = 123 + 13,

provides a constructive proof of the CUBE –SUM assertion.

In many cases of existence theorems, either it is quite difficult to produce a
constructive proof or the constructive proof is not known, then we use a
nonconstructive method to prove an existence theorem.

Non–Constructive Proof: Sometimes, we do not (rather we are unable to) show the
existence of an object of the required type. In such cases, we prove an existence
theorem by some non-constructive method of establishing the truth of the existence
theorem. A non-constructive method shows that some element of the required type
must exist, but the method is not able to tell exactly which is the element of the
required type. We give below two examples of non-constructive proofs of existence
theorems.

The first non-constructive existence proof is about the claim: The polynomial
equation

 5x1001+ 23 x93 + 37 x17 + 52x – 88 = 0
has a real root.

The truth of the claim is based on the following well-known result:

A polynomial equation p(x) = 0 of degree n and having real coefficients, has n
complex roots (not necessarily all distinct) and for each complex root a + ib with b
0, a – ib is also a root of P (x) = 0.

As a consequence, if P(x) is odd degree, it must have a real root. However, it is quite
difficult to find out the real number, which is a real root of the given polynomial
equation given above.

The next non-constructive proof is about a well-known result: These exist
irrational numbers x and y such that xy is a rational number.

The following argument establishes the truth of the above result: We know 2 is an
irrational number, but we do not know whether (2) 2 is irrational OR not. If
(2) 2 is rational then x and y each equal to 2 are the required rational
numbers. However, if (2) 2 is irrational then x = (2) 2 and y = 2 are
two irrational numbers such that ((2) 2) 2 = (2)2 = 2 is rational.

However, in the argument above, we exactly do not know whether the required pair is
(2) 2 and 2 or 2 and 2 .

We give below a non–constructive proof of the theorem: There is a total
computable function which is not primitive recursive.

Second Proof of Theorem 21 (ii)

All the functions in the following argument are assumed to be of the form
f: N N. only. Let us assume that the above statement is false, i.e, we assume that
every total computable function is primitive recursive. Then, we use Cantors’
Diagonalization Method, (as is used in showing the existence of a non-rational real
number) to arrive at a contradiction.

The representation of a primitive recursive function is obtained by applying finite
number of times the structuring rules to the initial functions ξ, σ, . The

representation of a function which is obtained by an application of a structuring rule
to initial functions gives the function as a finite sequence of symbols, e.g,

k

i

Recursive Function
Theory

 σ . (m
k

i 1, …., mk) uses only finitely many symbol. Each structuring rule adds only

finitely many additional symbols to get the representation of a new function from that
of already defined function. Thus each primitive recursive function must be
representable as a finite sequence of symbols. We arrange the primitive recursive
functions according to the number of symbols in the sequence representing the
functions, starting with the one with least number of symbols in it, followed by the
one having least number of symbols among the remaining. Among function
represented by equal number of symbols, we use dictionary type of ordering. Thus,
all the sequences of symbols representing the primitive recursive functions can be
written in the form of an ordered table starting at the top with a function having least
number of symbols in its representation. According to the order of the function in the
table we name the functions, with the top one named as f1, next as f2 and in general nth
function in the table being called fn,

Next, we construct a new function
 g: N N such that
 g(n) = fn (n) +1 (39)

In other words, the value under function g of the argument n ε N, is obtained by
taking value under the nth function fn of n and then adding 1 to it.
As fn is primitive recursive for each n, the value fn(n) exists and is obtainable in finite
number of steps. Also, adding 1 is only one additional step to get g(n) from
fn (n). Also as fn is total, therefore for each nεN, fn(n) exists and hence fn(n)+1 exists
and hence for each nεN, g (n), being equal to fn(n)+1, exists. Thus g(n) is also total
and computable and its value at n differs from the value of fn, because

 g(n) = fn (n) +1 fn(n),
for each fn in the table.

Thus g is not in the table of all the primitive recursive functions, i.e., g is not primitive
recursive.

The last statement contradicts the assumption that every total computable function is
primitive. Hence the assumption is wrong, thereby proving the theorem.

Thus, we have proved that the class of primitive recursive functions is a proper
subclass of the class of total computable functions.
Thus primitive recursion as a technique for constructing computable functions is
weak in the sense that it is not able to construct even such simple functions as Quot.
The above discussion suggests that the formal technique of primitive recursion should
be further strengthened, so that, the enhanced formal technique captures all such
functions which are otherwise, easily seen to be computable. One such technique,
called unbounded minimalisation, is discussed in the next section.

3.7 THE TECHNIQUES OF UNBOUNDED
MINIMALISATION, PARTIAL RECURSION
AND µ-RECURSION

In order to achieve the goal mentioned in the previous paragraph, we first consider the

 115

Definition: Unbounded Minimalisation
For a given function

 116

Turing Machine and
Recursive Functions

g : Nk+1 N
we define a function
f: Nk N such that
for x = (x1, x2, …,xk) Nk and for some y N,
f(x) equals y

if (and only if) the following conditions are satisfied:

(i) g(x , y) = 0 and

(ii) if g(x , z) = 0 then y z
 (i.e., y is the smallest among all the values z N for which g(x , z) = 0)

(iii) g(x , u) is defined for all u y, with u N. (40)

Further, if, for some x Nk, such a y does not exist, then f(x) = undefined.
Such a function f is said to be obtained from g through unbounded
minimalization and is denoted as

f(x) = y [g(x , y) = 0]

Example 22: Let g : N N N be defined by the following table.

g(0, 0) = 5 g(l, 0) = 5 g(2, 0) = 8 g(3, 0) = l
g(0, 1) = 4 g(l, 1) = 6 g (2,3) = 0 g(3, 1) = 2

g(0, 2) = 6 g(l, 2) = 0 g(2, l) = 5 g(3, 2) = 0
g(0, 3) = 0 g(l, 3) = 3 g(2, 2) = undefined g(3, 3) = 4
g(0, 4) = l g(l, 4) = 0 g(2, 4) = 7 g(3, 4) = undefinied

Then
 f(0) = 3
f(1) = 2 (though g(1, 4) = 0 also, but 2 is the minimum k such that f (1, 2) = 0)
f(2) = is not defined, because g (2,3) =0, yet g (2,n) is undefined for n = 2
 which is less than 3.
f(3) = 2 (though g(3, 4) is undefined for y = 4 but then 4 > 2 and g(3, 2)=0)

As can be seen from the above example, minimalisation can be defined for functions
that are undefined for some values of the domains. Also, minimalisation may produce
functions that are undefined for some values of the domain.

Also, unbounded minimalization may lead from total functions g: Nk+1 N to
partial functions f: Nk N.

For Example 23:

g (n, m) =

 otherwise n,
10 n mfor 0,

10 n m allor 1,m f

Then obviously g: NxN N is total, but, f: N N is such that f (n) is not defined for
n 11.

Also the converse may happen, i.e., unbounded minimalization may lead from
some partial functions g: Nk+1 N to total functions f: Nk N. For example

Recursive Function

Theory Let g(n, i)=
n if undefined
n ior

i
fin

Then we can see that f (n) = n for all n
Thus unbounded minimalisation leads from a strictly partial function g to a total
function f.

Using the technique of unbounded minimalization, we extend the set of computable
functions to the class of µ-recursive Functions, also called Partial Recursive
Functions. The new class includes the class of Primitive Recursive Functions as its
proper subclass.

Remarks24

The reason for the use of the adjective unbounded before minimalization lies in the
fact that, there is no bound, on the argument, upto which we are required to try to find
a y, which satisfies (i) and (iii) under (40).
Remark 25

Problems with unrestricted application of unbounded minimalisation to a primitive
recursive function.

If g is an arbitrary primitive recursive function, then there is no general method of
telling whether a y that satisfies all the three conditions of unbounded minimalisation
given by (40), exists. In other words, unbounded minimalisation applied to an
arbitrary primitive recursive function, may not yield a function which may be
computable in any intuitive sense (the proof of the claim is beyond the scope of the
course).

Remark 26

Bounded Minimalisation: On the lines of the definition of unbounded
minimalisation, we can define bounded minimalisation, for a given integer, m, of
a partial function
 g: Nk+1 N
as a function
 f: Nk+1 N such that
for x = (x1, x2, …., xk) ε Nk, m ε N
and y εN with y m
 f(x , m) equals y
if (and only if) the following conditions are satisfied:

(i) g (x , y) = 0

(ii) if g (x , z) = 0 then y z
 (i.e, y is the smallest among all values z ε N for which g (x , z) = 0)

(iii) g (x , u) is defined for all u y with u ε N

Further, if, for some x ε Nk, such a y (m), does not exist, then
f(x) = undefined.

 117

Such a function f is said to be obtained from g through bounded minimalisation
and is denoted as

 118

Turing Machine and
Recursive Functions f(x , m) = µ y m [g (x , y)]

However, through the following theorem, we show that bounded minimalization is
not a powerful technique to extend the class of primitive recursive functions to more
general class of computable functions.

Theorem 27: If the function f (x , m) is obtained by bounded minimalization for a
given integer m and when applied to only primitive recursive function g (x , y), then f
(x , m) must be primitive recursive (however, only the last value may be ‘undefined’).

Proof: Define the functions
 hi (x) : Nk Ni+1

as follows:

h0 (x) = g (x , 0)
h1 (x) = (g (x , 0), g2 (x , 1))

As h1 (x) is obtained by combination rule applied to values of a primitive recursive
function g (x , y), therefore, h1 (x) is a primitive recursive function.
Next, consider

h2 (x) = (h1 (x) , g (x , 2))

Again as h2 (x) is obtained by applying combination rule to two primitve recursive
functions h1 (x) and g (x , 2) therefore, h2 (x) is primitive recursive. Continuing like
this, the function h1(x) ….. hm (x) are all primitive recursive functions. But
hm (x) = (…(f (x , 0), g (x , 1)), g(x , 2))…, g (x , m))

Thus for any x , we can compute the row of values g (x , 0), …… g (x , m) can find
the minmum i ≤ m, if it exists, with g (x , i) = 0

However, if such an i does not exist then also we able to determine that f (x , m) is
‘undefined’. Thus, we can say that bounded minimalizations of a primitive
recursive function is primitive recursive

Remarks 28

At this stage, it is important to note that in unbounded minimalization, the number m
is not given and hence, in the case of f (x) the unbounded minimalization of a given
primitive function g (x , y), we can not know when to stop finding values g (x , 0),
g (x , 1)……….., if all these values happen to be non-zero, before declaring f (x) as
undefined.

Therefore, we can not claim that the unbounded minimalization of a primitive
recursive function is primitive recursive.

Remarks 29

We already know that primitive recursion is a weak computational technique in the
sense that it is not able to show even div as computable function. Further, through

Theorem 30: we show that Bounded Minimalisation produces only primitive
recursive functions from primitive recursive functions. Thus Bounded

Minimalisation can not be used as a technique to extend primitive recursion to more
powerful computational technique.

Recursive Function
Theory

Also, under Remarks25, we mentioned that Unbounded Minimalization though is
more powerful technique, yet, its unrestricted application may lead to functions which
may not be computable in any intuitive sense. Thus we have to find a technique which
is a restriction of unbounded minimalisation but is an extension of Bounded
Minimalisation. The technique to be described is called µ-recursion or partial
recursion. The discussion of partial recursion requires introduction of a number of
concepts including the

Definition: Regular Function

A function
 f: Nk+1 N
is said to be regular if (and only if)
for each n ε Nk, there is an m such that
 f(n , m) = 0
In view of the fact that unbounded minimalization may lead from total functions to
strictly partial functions, therefore, we need to generalize our definitions of
combinations, composition of functions and that of primitive recursion so as to be
applicable to strictly partial functions also.

Generalized/New) Combination Rule

Let
 g: Nk Nm and
 h: Nk Nn

be two partial functions. Then the composition partial function
 f: Nk Nm+n
is defined as follows:

If x = (x1, …., xk) ε Nk
f(x) = (g(x), h(x)),
and both the values g (x) and then h (x) are defined; else f(x) is undefined.

(Generalized/New) Composition Rule

Let f: Nk Np and
 g: Nm Np
be partial functions then

g · f : Nk Nm
is given as follows:

Let x = (x1, x2, … xk,) Nk
Then (g · f) (x) = (g (f (x))), if both f(x) and g (f (x)) are defined, else g·f is
undefined.

Similarly, we have the

(Generalized/New) Primitive Recursion:

 119

Given the partial functions
g : Nk N and

 120

Turing Machine and
Recursive Functions

h : Nk +2 N

then a (partial) function
f: Nk+1 N
is said to be obtained through partial recursion from g and h, if
f (x , 0) = g(x),
including ‘undefined’ as a possible value for g as well as f and
f(x , y + 1) = h (x , y, f(x , y)),
which will have the value ‘undefined’ if either f (x , y) is ‘undefined’ or if f(x , y) is
defined but h(x , y, if(x , y)) is ‘undefined’.
Now, we define below the concept of µ-recursion, which as a technique for
constructing more complex computable functions, subsumes partial recursion and is
more powerful a technique than primitive recursion.

Definition: A µ-recursive function is a partial function (including a total function)
that can be constructed from the initial functions by a finite number of
applications of the (i) combinations, (ii) compositions, (iii) primitive recursions and
(iv) unbounded minimalization to (only) regular functions.
Remarks 31

The fact of primitive recursion technique is a special case of µ-recursion technique,
easily follows from the fact that any primitive recursive function f is obtained by finite
numbers of applications of (i) combination (ii) composition and (iii) primitive
recursion to initial functions. But then by definition of µ-recursion, f must be
 µ-recursive function (ii) However, µ-recursion is strictly more powerful a technique
than primitive recursive from the facts that div is not primitive recursive but is µ-
recursive as follows from

Example 32: Show the function quot: N2 N defined earlier as
div (x, y) = {integer portion of x/y if y 0, undefined if y =0},
 is µ-recursive, but not primitive recursive.

Hint: quot is µ-recursive, as
 quot (m, n) = µ t [((m + 1) (prod (t, n) + n)) = 0]
 Futher div is a partial function, therefore, it can not be primitive recursive.

Ex. 13) Show that the function SQRT: N N such that SORT (x) = y if and only if
 x = y2, is µ-recursive but not primitive recursive.

Finally we come to the end of this unit with Church’s Thesis which states: The class
of µ-recursive functions contains all computable functions. Church’s thesis about
µ-recursive functions is parallel of Turing thesis about Turing Machines. Church’s
thesis claims that the µ-recursion technique is ultimate in constructing computable
function in the sense that if a function is not µ-recursive then it can not be computable
by any formal technique. As mentioned in the previous unit, similar claim is made by
Turing Thesis about Turing Machine Model. We repeat the claim of Turing Thesis:
Turing Machines possess the power of solving any problem that can solved by any
computational means. In the next unit, we discuss the equivalence of the two theses
giving rise to what is commonly known as Church-Turing Thesis.

3.8 SUMMARY

In this unit, we introduced the Theory of Recursive Functions, which is a declarative
approach to the study of computational phenomenon. We started with some examples
of recursive definitions of some functions. Then we introduced the concepts of initial
functions and primitive recursion followed by the concept of primitive recursive

function. An example to motivate the student for the understanding of the concept of
primitive recursion, was given before the introduction of the concept of primitive
recursion. Next, we exhibited that primitive recursion is not strong enough a
technique to capture the computational phenomenon, in the sense that some of even
elementary functions, though easily seen to be computable, are not primitive-
recursive. Then the notion of total computable functions which subsumes the concept
of primitive recursive function was introduced, that captures more functions which are
intuitively computable. But again it was shown that even the concept of total
computable function is not satisfactory in capturing a number of functions which are,
intuitively and even formally, computable. Finally, we discussed µ-recursion using
unbounded minimalization technique to capture essentially all the functions which can
be shown to be computable by any formal means.

Recursive Function
Theory

Also, we established the following inclusion relation () between various classes as:
set of Initial Functions set of Primitive Recursive Functions set of Total
computable Functions set of µ-Recursive Function ≤ set of partial recursive
function ≤ set of all (partial) functions.

3.9 SOLUTIONS/ANSWERS

Exercise 1 For a function f: X Y to be total, we need to show that for each
 element x
 of the domain X, there is an element y of the codomain Y such that
 f(x) = y

 ξ is total : ξ : N N is such that for each n ε N, the domain there exists

0 ε N, the codomain, such that ξ (n) = 0. Hence ξ is total
 σ is total:
 σ : N N is such that for each n ε N, the domain, there exists n + 1 ε

N, the codomain, such that
 σ (n) = n + 1.
 Therefore σ is total

k

i
 1 ≤ i≤ k, is total : By definition

r

i
: Nk N

 is such that
 for an arbitrary element (n1, n2, …… nk) of the domain Nk,

k

i
(n1, n2, .., ni, …,nk) = ni

 Hence
k

i
is total.

Exercise 2 Consider

 = (8, 7, 4, 2)
2

2

2

1

4

1

4

4

 =
2

2

2

1

4

1

4

4
2) 4, 7, (8,2) 4, 7, (8,

 = (8,2)
2

2

2

1

 =
2

2

2

1
)2,8()2,8(

 = (2,8)

Exercise 3 f(4) = 3 f(3)

 121

 = 3 (3 f(2))
 = (3 3) (f(2))

 122

Turing Machine and
Recursive Functions

 = 6 (3 f(1))
 = 9 (3 f(0))
 = 12 f(0) = 12

Exercise 4 Hint: n(24), take k = 2, and g as identity function g: NxN NxN i.e,
 g(n1, n2) = (n1, n2) for all n1, n2 ε N.
 Then (24) takes the form f (n) = g (h1 (n), h2 (n)) = (h1 (n), h2 (n)) for

all n ε Nm,
 Which gives f as combination of h1 and h2.
 Again take k=1 and we get f as the Composition of h1 and g.

Exercise 5 (i) For m, n ε N
 Plus-Prod (m,n) = (Plus (m,n), Prod (m,n))
 Plus and Prod are already shown to be Primitive recursive. And

combination of primitive recursive functions gives a primitive recursive
function. Hence the proof

 (ii) Exp is primitive recursive follows from the following
 Exp (m,0) = σ . ξ () and
 Exp (m, n + 1) = prod ((m, n, Exp (m, n)), (m, n, Exp (m, n)

3

1

3

3

 (iii) Hint: on the line of Exercise 5 (i)

Exercise 6 Pred (0) = ξ ()
 Pred (1) = ξ
 Pred (n + 1) = σ (n, pred (n))

2

2

Exercise 7 monus (m, 0) = m
 monus (m, n + 1) = pred (monus (m, n))

Exercise 8 It can be easily verified that

 Eq (m, n) = 1 ((m n) + (n m)),
 which in formal notation turns out to be
 Eq (m, n) = monus (σ ξ (), plus (monus (m, n), monus (n, m))
 = (monus monus))) (m, n)

2

2

2

1

2

1

2

2

For example

Eq (4, 1) = 1 ((4 1) + (1 4))
 = 1 (3 + 0)
 = 0
Again

Eq. (4, 4) = 1 ((4 4) + (4 4))
 = 1 (0 + 0) = 1

Exercise 9 Each integer can be thought of as a member of N2, for example, 5 may be
 thought of as
 (6, 1) and –5 as (1, 6). In general, (m, n) є N2 denotes the integer m - n.

Then the function minus: I x I I can be sought of as
minus: (N x N) x (N x N) N x N such that if (m1, n1) & (m2, n2) є N x N then

minus ((m1, n1) & (m2, n2))

= (m1 + n2, n1 + m2) Recursive Function

Theory = (plus (m1, n2), plus (n1, m2)) (39)

Plus is already shown to be primitive recursive and combination of two primitive
recursive functions (viz plus and plus) is primitive recursive. Hence the above
equation (39) shows that minus is a primitive recursive function.

Exercise 10 Hint

 ┐ eq = monus. (x eq) c2

1

Exercise 11 Hint

Ki = monus (Ii, Ii-1)
Where
Ij (m) = eq (m j, o)

Exercise 12 Hint

f = mult (7, ko) + mult (12, k5) + mult (8, mult (┐Ko, ┐k5))

Exercise 13 As SQRT is a strictly partial function, therefore, SQRT is not primitive
 recursive.

Further as SQRT (x) = µ t[(1 Eq (x, prod (t,t)))=0], therefore, SQRT is µ-recursive.

3.10 FURTHER READINGS

Lewis H.R and Papadimitriou C.H., Elements of the Theory of Computation
PHI (1981),

Peter R., Recursive Functions, Academic Press (1967)

Epstein Richard L. and Carmilli W.A., Computability, Computable Functions, Logic
and the Foundations of Mathematics (II Edition) Wadsworth & Brooks (2000).

(A highly readable book presenting advanced level topics from elementary point of view)

Goodstein R.L., Recursive Analysis North-Holland (1961)

Rogers H., Theory of Recursive Functions and Effective Computability, McGraw-Hill
(1967)

 123

 124

Turing Machine and
Recursive Functions

	3
	Lecture Notes on Theory of Computation Module 2 - Unit 3 by Dr. SK Rath
	UNIT 3RECURSIVE FUNCTION THEORY
	StructurePage Nos.
	
	Remark 1

	Please note the minute difference between Plus-Prod-Exp and New-Plus-Prod-Exp
	Partial Function
	
	For example

	However, as mentioned earlier, we are restricting to only functions of the form
	3.4PRIMITIVE RECURSIVE FUNCTIONS

	The set of primitive recursive functions is obtained by three types of initial functions (which are elementary primitive functions) and three(structuring rules for constructing more complex functions from already constructed functions.
	Next, we define the three structuring rules which are known as
	Examples 12:
	3.5INTUITIVE INTRODUCTION TO PRIMITIVE RECURSION
	
	
	
	Summerising, we get

	Summarizing, the function J (m, n) may be defined as
	
	Induction step

	Let us try the following exercises
	The answer to the above is no, which is substantiated by the following
	Definition: Unbounded Minimalisation

	Then
	f(0) = 3
	
	
	
	Now, we define below the concept of µ-recursion,�

	For example
	Eq (4, 1) = 1 � ((4�1) + (1 � 4))
	Exercise 10 Hint
	recursive.

