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3.0 INTRODUCTION                                                                

Let us stop for a moment and know that there really is another way (rather, 
more ways)  of looking formally at the notion of computation. 

In the previous units, we have discussed the automata or machine models of the 
computational phenomenon. The automata approach to computation is Operational in 
nature, i.e., automata approach is concerned with the computational aspect of ‘how 
the computation is to be performed’. 

Here is Edward Bear, coming 
downstairs now, bump, bump, bump, 
on the back of his head, behind 
Christopher Robin.  It is, as far as he 
knows, the only  way of coming 
downstairs, but sometimes he feels 
that there really is another way, if 
only he could stop bumping for a 
moment and  think of it. 
 
Winnie-the-Pooh, 1926 A.A.Milne 

 
In this unit, we will be concerned with Recursive Function Theory, which is a 
functional or declarative approach to computation.  Under this approach, 
computation is described in terms of  ‘what is to be accomplished’ in stead of  ‘how 
to accomplish’.  
 
Each computational theory (rather each theory about any other phenomenon also) 
starts with some assumptions, for example, about basic (undefined) concepts, 
operational capabilities and a set of statements, called axioms and postulates,which 
are  assumed to be fundamentally true (i.e, assumed to be true without any argument).  
In Automata Theory, the concepts like ‘state’ ‘initial state’, ‘final state’ and ‘input’ etc 
are assumed to be understood, without any elaboration.  Further, the capabilities of an 
automata to accept an input from the environment; to change its state on some, or 
even on no input; to give signal about acceptability/unacceptability of a string; are 
assumed. 
 
In Recursive Function Theory, to begin with, it is assumed that three types of 
functions (viz ξ, σ and which are called initial functions  and are described 

under Notations below) and  three structuring rules ( viz combination, composition 
and primitive recursion) for constructing more complex functions out of the already 
constructed or assumed to be constructible functions are so simple that our ability to 
construct machines to realize these functions and the structuring rules is  taken as 
acceptable without any argument. The functions, obtained by applying a finite 
sequence of the structuring rules to the initial functions, are called Primitive 
Recursive functions. However, with these simple functions and elementary  

k

i

 
structuring rules, though it is possible to construct very complex functions yet, even 
some simple functions like division are not constructible by the above mechanism.   
                                                 
 Two other well-known formalisms are (i) Church’s -Calculus and (ii) Curry’s Combinatory Logic 



 
Therefore, another structuring rule, viz unbounded minimalization is added which 
leads to the concepts of µ-recursion and partial recursion. 

Recursive Function 
Theory 

 
Constructibility/Computability has been a pursuit of the mathematicians,  since at 
least the peak of Greek civilization in third/fourth century B.C.  The intellectual 
concern was about the constructibility of real numbers, i.e, for a given real number 
α, to attempt to draw a line of length α, with the help of only an unmarked straight 
edge and a compass, provided fundamental unit length is given. These attempts at 
constructibility of real numbers, lead to some famous problems  including the 
problems of  
 
(i) Trisecting an angle, (ii) Duplicating a cube and (iii) squaring a circle. 
 
In this unit, the concept of constructible or computable, the latter being the more often 
used term in Computer Science, is based only on our intuitive understanding of the 
concept.  Discussion of computable in the formal sense based on Church-Turing 
hypothesis, is taken up in other units. 
 
To some of the learners, the treatment of some of the topics may appear to be 
undesirably too detailed. However, the details are justified in view of the fact that 
the subject matter is presented from the point of view of the undergraduate 
students, many of whom may not have studied Mathematics even at 10+2 level. 
 
In order to facilitate faster coverage of the material by advanced learners, some 
of the contents are placed in boxes which, without any loss of continuity, can be 
skipped after first reading or even after a cursory glance. 
 
Note:   Exercises in the Block are numbered in one sequence; all other numbered 
items like theorems, examples, lemmas, statements are taken together for another 
numbering sequence. 
 
Key words: recursive definition, partial function, total function, initial 

functions, structuring rules, primitive recursion, bounded 
minimalization unbounded minimalisation, partial recursion, 

   -recursion. 
 
Notations: N :  the set of natural numbers including 0 

 I  :   the set of integers 

 ξ    :   the zero function which maps every element of the domain   
                                        to 0. 

 σ  :   the successor function, which maps each natural number n   
                                        to n + 1  

  :  the projection function which maps the k-tuple  
k

i

             (m1, …, mi, .., mk) to the ith component mi, for 1  i  k. 

 ┐ :  negation 

    : there exists 
 

3.1   OBJECTIVES   

At the end of this unit, you should be able to 

 93

 

                                                  
 For more details refer pp 297-299, A First Course in Abstract Algebra by J.B. Fraleigh, VII 

edition, Pearson Education, 2003. 
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Recursive Functions  To explain the concepts of primitive recursion, -recursion and partial recursion  

 alongwith other auxiliary concepts 
 to tell the hierarchy between the classes of primitive recursive functions, total 

computable functions, -recursive functions and partial recursive functions.  
 use these concepts and techniques for generating functions of these classes 

 

3.2 SOME RECURSIVE DEFINITIONS 

We are familiar with the concept of factorial of a natural number n, denoted as n!, 
with one of the ways of defining it as: 

n! = n. (n – 1) .………….1 (1)  
 
This is an explicit definition of n!. 
 
However, the following is an implicit definition, called recursive definition, of 
factorial.  

0! = 1 and 
n! = n . ( n – 1)!                                   for  n  1. (2)  

 
The definition (2) above of the factorial is recursive in the sense that in order to find 
the value of factorial at an argument n, we need to find the value of factorial at some 
simpler argument, in this case (n-1), alongwith possibly some other calculations. 
In both the explicit and implicit definitions (1) and (2) above of n!,our approach is 
functional or declarative in nature, where computation is described in terms of ‘what 
is to be accomplished’ instead of ‘how to accomplish’. 
 
Similarly, for a natural number n or a real number (or even a complex number) x, the 
exponential xn is explicitly defined as 

xn =     (3) 

  

43421
ntimes

xxx .......

Also, the exponential xn is recursively defined as: 

x0  = 1 
xn = x   xn – 1, for a natural number n  1.  (4) 

 
Remark 1 
 
(i)  We may observe that non-recursive definitions (1) and (3) given above 

respectively for n! and xn use the imprecise notation ‘…..’ .   On the other 
hand, the corresponding recursive definitions (2) and (4) use only precise 
notations. 

 
(ii) In (2) and (4), the definitions are given in terms of their own partial 

definitions viz. n! in terms of (n – 1)! and xn in terms of xn – 1 .  In this way, the 
problem of evaluating n! is converted to the problem of evaluation of (n – 1)!.   
This conversion of a problem to a less complex version of the problem may 
be called reduction in case we are able to show that calculating (n – 1)! is 
relatively less complex than calculating n!.  If we look back on definition (2) 
of n!, we observe that 0! is  given as a definite number requiring no more 
applications of the definition of factorial to another number. And reaching 0! 
from (n —1)! takes lesser number of applications of (2)  than reaching 0! 
from n!. Thus, we can see that the problem of calculating n! is reduced 
through successive applications of the definition of factorial as given by (2) 



 
and is terminated when 0! is replaced by 1. Exactly on the similar lines, the 
problem of calculating xn is gradually reduced by the application of definition 
(4) and is terminated when x0 is replaced by 1. 

Recursive Function 
Theory 

   

3.3  PARTIAL,TOTALANDCONSTANT 
FUNCTIONS 

As mentioned under Remarks (ii) above, the factorial of n is defined in terms of only 
the factorial of another, but smaller, number. However, this idea of defining a 
function in terms of only itself may be further generalized when a function f may 
be defined, in addition to in terms of f itself,  possibly in terms of some other 
functions also. Another way in which the idea of recursion as explained above is 
generalized, is through extending the scope of recursive definitions to  partial 
functions (to be defined). Various generalizations, including the one given below, 
lead to the definitions of primitive recursion and partial recursion. 
 
The idea of functions from N to N,  can be generalized to functions from Nk to Np 
where 
k = 0, l, 2, ……. 
p = 0, l, 2, …… 
 
Example 2: of Functions from Nk  Np where k > 1 

Plus: N   N  N,   with  
plus (n, m) = n + m, (5) 

 
Mapping every pair of integers of N to integers in N. 
E.g., Plus takes the ordered pair (3, 2) and returns 5. Similarly, Plus takes the ordered 
pair (4, 0) and returns 4. 
 
Similarly, we may define 
PROD: N  N  N,   with 

PROD (m, n) = m  n for m, n  N.   (6) 
And we may define  
Exp (m, n) = mn for all m , n  N     (7) 

 
Example 3: of  a function from Nk to Np where k > 1 and p > 1: 

Plus-Prod: N2  N2,   such that    
Plus-Prod  (m, n ) = (m + n, m  n) = (Plus (m, n), Prod (m, n)) (8) 
 
In other words, the function Plus-Prod takes a pair of elements m and n of N and 
maps this pair (m, n) to a pair of integers, viz, (m + n) and (m . n) 
 
Also, we may define the function 
Plus-Prod-Exp: N2  N3 with 
Plus-Prod-Exp (m, n) = (m + n, m  n, mn) 

   = (Plus (m, n), Prod (m, n),  Exp (m, n))  (9) 
 
Here the ordered pair (m, n) is mapped to the ordered triple of three integers, viz,  

(m + n), (m . n) and mn 
 
Example 4: of function from Nk  Nq   Np  where k, q, p  N 
A somewhat similar but distinct function say 
New-Plus-Prod-Exp: N2 N2  N 

 95

 

  may be defined as 
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New-PIus-Prod-Exp (m, n) = ((m+n, m n), mn)) 
= (Plus-Prod (m, n), Exp (m, n))   (10) 

Please note the minute difference between Plus-Prod-Exp and New-Plus-Prod-Exp 
 
Remarks 5  
 
In the definitions under (5) to (10) above, among other facts, we may observe that 
earlier defined functions may be used in defining more complex functions. Our ability 
to define more and more complex functions in terms of earlier defined functions, 
plays a very important role in the study of primitive recursion and partial recursion 
etc, which are generalizations of the concept of recursion discussed in defining n! and 
xn etc. 
 
The recursive definitions of Plus, Prod etc. will be discussed later. 
 
The constant Functions: 

Though it is not intuitive, yet we may have functions on N which do not require any 
argument.  
 
Consider the function 

C5 : N  N   such that 
C5 (n) = 5,   for all n  N   (11) 

 
In view of the fact that the value 5 is independent of n in (11), we can very well  
write (11) as 

C5 ( ) = 5,  (12) 
 
Given the fact that we are considering domains of functions as Nk for k  N,  we 
extend our notation for functions from Nk  N to include functions from N0  N, and 
rewrite (11) as 

C5 : N0  N  such that  
C5  (  ) = 5.  

 
Also, in order to include in the notation itself the fact that the function takes zero 
number of arguments, we may use the notation C0 instead of C , i.e., 

C0
5  = 5   (13) 

 
Generalizing the constant function C0

5  we may define 

C0
q  : N0  N   such that  

C0
q   () = q,  for some fixed integer q in N. 

 
Further, we can extend the set of constant functions to include the functions 

Ck
q  : Nk  N   such that  

Ck
q  (n1, n2, …, nk) = q,  

for n1, n2, …, nk   N   and for some integers k and q in N.   (14) 
 
Partial Function 

We are already familiar with the concept of function in the mathematical sense. 
Informally, for two given sets X and Y a function 
   f : X   Y 
is a rule that associates to each element x of X a unique element y of Y. Here X is 
called the domain of the function f and Y the codomain of f.  (15) 



 
 Recursive Function 

Theory However, in order to extend the class of computable functions beyond the class of 
primitive recursive functions (to be defined), to parial-recursive functions (to be 
defined), we relax the condition ‘for each element x of X’ in the definition of function 
leading to the following definition.  
 
Partial Function: A partial function is a rule 

f: X  Y 
that associates elements of Y to elements of X in such a way that, for y1  Y if there 
exists an element x1 of X   s.t. f(x1) = y1, then there is no element y2 of Y, with  
y1  y2, s.t. f(x1) = y2.     (16)
  
However, there may be some elements x of X for which there may not be any y such 
that f(x) = y. In other words, in the definition of a partial function, it is not necessary 
that for each element x of X, there must  be an element y of Y that corresponds to x 
under f.  However, for an element x of X, if there is an element y1 of Y that 
corresponds to x under f, then there can not be a y2 in Y with y1  y2 such that y2 also 
corresponds to x under the partial function under consideration. 
 
Example 6: We consider a rule of correspondance Quot: N  N  N that takes a pair 
(m, n) of integers and associates an integer q, if it exists,  s.t.  m = nq + r with  
0  r < n. Now if n =0 then no r with 0  r < 0 exists implying Quot (m, n) is not 
defined for n = 0. Thus Quot is a partial function, but not a function or a total function 
as is going to be defined below. 
 
Total Function: If a partial function satisfies the condition given in (15), i.e., it is a 
function in the conventional sense, then it will be called Total Function. The 
adjective total is added to a function in conventional sense in order to differentiate the 
function in conventional sense from the partial function which satisfy condition (16) 
but do not satisfy the condition (15) above. 
 
Remarks 7 
 
In this block, unless it is mentioned otherwise we will be dealing with functions 
(partial or total), the domains of which are only of the form Nk = N x … x N for k  N. 
 
Functions with domain Nk are called k-place functions.  
 
Also, unless it is mentioned otherwise, the functions under consideration are restricted 
to the ones that have N as their codomain. Our consideration of only the functions of 
the form f : Nk  N, is not a major restriction, because using some encoding 
techniques like Gödel Numbering, any domain can be expressed as a subset of the set 
Nk.  
 
Why  we need partial functions? 

We know there are infinitely many possible sets which can be represented by finite 
means. For example the infinite set  N is finitely representable by the following two  
statements: 

(i) 0 is a member of N     and 
(ii) if n is a member of N then so is  (n) (i.e, (n + 1)). 
 
And for each such non-empty set X, at least one function, say the identity function  

 97

 

 

I : X  X, can be defined.  Also, for such sets X, Y, Z etc., we can think of new sets 
which may be the product sets, for example X  Y, Y  Z  X, just to name a few. 
Each of these product sets itself can be the domain (or even the range) of some 
functions. 
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Thus, unless we use an ingenious method of the type described below, the general 
discussion of functions would involve consideration of infinitely many types of 
domains and codomains, even if, each of these may be finitely representable. 
 
By an appropriate encoding, it can be easily seen that each countable set can be 
thought of as either Nk or as a proper subset of Nk, for some 
k = 0, 1, 2, ---- 
 
For example 
 
The set X={a, b, c, …., z}can easily be thought of as a subset of N, by using the 
following encoding 
a  1 
b  2 
    . 
    . 
    . 
    . 
z  26 
 
Thus, functions, in stead of being considered between arbitrary but countable domains 
and codomains, may be considered as functions of the form P  Nm, where P either 
equals an Nk or is a proper subset of Nk,  for suitable integers k and m. 
However, any function f: X  Nm for X = {a, b, ..., z} above when considered after an 
encoding as a function f: N  Nm, cannot be total, because f (m) for m  27, is not 
defined. In general, any function with a finite domain when considered as a function 
between the encoded sets NK and Nm must be strictly partial. 
Also, for large number of functions involved in the solution of everyday problems, 
each has a finite domain.  
 
Thus, in order to simplify the discussion of functions with arbitrary but countable 
domains and ranges, it is possible, through appropriate encoding, to consider such 
a function as a function of the form Nk  Nm provided functions are allowed to be 
partially defined on the domain Nk. 
 
Examples 8:  of total and Partial Functions 
 
(i)  The successor function S: N   N, s.t., S(x) = x + 1 for all x є N. The function 

S is a total function from† N to N. Successor function plays an important role 
in the recursion theory. Therefore, it is useful to know that even the notation   
is used to denote the successor function. 

 
(ii)  The function 
 Plus: N2  N    such that for all x, y  N.  
 Plus (x, y) = x + y, 
 is also a total function  
 
(iii)  However, the function   
 Minus: N2  N  such that 
 Minus (x, y) =  x – y   for x   y in N,  
 is only a partial function, which is not a total function.  
 In other words, Minus is a strictly partial function. 
  

                                                 
† While talking of total or partial functions, it is understood that the domain is of the  form Nk. 



 
 However, a slightly different function say Minus_Int becomes total, if we 

allow 
Recursive Function 

Theory 
 Minus_Int: N2  I,      
  
 with I, the set of integers as codomain and the rule of correspondance given by 
 Minus_Int (x, y) = x – y  for x, y  N.     (in stead of, for just x   y) 
 However, as mentioned earlier, we are restricting to only functions of the form 
 f :  Nk   N. 
  
 Therefore, if required, we discuss only the strictly partial function Minus.  
  
 However, we will discuss a scheme of discussing Minus-Int as a function from 

N2 to N2. 
 
(iv) corresponding to the partial function minus, there is a well-known function 

                                                    
          monus, also denoted as  and defined as 
 

Monus (x, y) =   
y  x if                  0,
y  x if      y         -x

                                                       
 Monus (x, y) may also be written as x  y. 
 
(v) We define the function div from N2 to N with div (x,y) = z, only for those pairs 

(x,y) of elements of N for which x = y.z for some z from N.  Then div is strictly 
partial. 

  
(vi)    The Square-Root function, named as say SQRT, 
 (also denoted by ) and given by 
 SQRT:  N  N 
 such that for x, y  N,    
 SQRT (x) = y   if y2 = x.  
 
Again SQRT is a strictly partial function. 
 
After having provided the necessary background, we explain the concept of primitive 
recursive functions the set of which forms a proper subset of the set of total functions. 
As the discussion of general partial recursive functions requires introduction of some 
more background material,  the general partial recursive functions will be discussed 
later. 
 
We mentioned earlier that, each of the approaches to computation starts with some 
elementary entities of some domain and some  structuring rules, where the rules are 
easily applicable to form more and more complex entities of the domain. 
 

3.4 PRIMITIVE RECURSIVE FUNCTIONS 

The set of primitive recursive functions is obtained by three types of initial functions 
(which are elementary primitive functions) and three  structuring rules for 
constructing more complex functions from already constructed functions. 
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 In the literature, two of the three structuring rules are combined in one rule and hence, in 

most of the literature, number of structuring rules is mentioned as TWO and not THREE.  
However, then presentation of the subject matter becomes too complex from the point of view 
of undergraduate students. 
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Three types of initial functions are 

(i) The 0-Place zero function ξ from N0 to N such that ξ( ) = 0   (19) 
(ii)  The successor function 
  : N  N 
 such that  
  (n) = n + 1   for all n  N.                                                  (20) 
 (iii)  The Projections: We know that for k  1, Nk is the set of all k-tuples 
 of the form n  = (n1, n2, …, ni, …, nk) for 1  i  k. 

 For each fixed i, with 1  i   k, we may define a function, denoted by , 

with 

k

i

  
 : N

k

i
k   N  such that for   n  = (n1, n2, …, ni, …, nk) 

 
k

i
n  =  (n

k

i 1, n2, … ni…., nk)  

 = ith component of  (n1, n2, … ni….., nk) =  ni   (21)      
 
Thus, we have defined k projection functions, each with domain Nk, viz.  
 

k

1
,  …, and each of which maps to N. 

k

2
, k

i
,...., k

k

 For the sake of explanation, we have (2, -7, 12, 4, 3) = 12 
5

3

 Finally, the zero-place zero function ξ, the successor function  and the 

projection function  for k  N, and i  N, with 1  i  k, are the only 

initial functions,  which are also called elementary primitive functions. 

k

i

 
Ex.1)   Prove that each of the elementary primitive function viz zero function ξ, 

successor function σ and each of  the projection functions ,  1  i  k, is 

a total function. 

k

i

  
In the very beginning itself, it was mentioned that computability of functions is a 
major concern in the Theory of Computation.   
 
In this context, consider the following  
 

Statement 9:  The initial functions ξ,  and are all computable .   
k

i

The statement is not a theorem,  the truth of which can be established through a 
proof. The statement is axiomatic in the sense that it should not only be intuitively 
correct but should be fundamentally true in the sense that it can not be otherwise. In 
spite of the above, we give an informal argument in support of the apparent truth of 
the statement. The computability of the initial function ξ is about our capability of 
constructing a machine to perform the activity of writing the symbol 0.  This 
capability can be assumed without any doubt.  Similarly, our capability of 
constructing a machine which returns (n +1) for each input n, can also be assumed 
without any doubt. Hence, we may assume that the successor function σ is 
computable. 
Finally, computability of a projection function say , is about the designing of a 

k

i

machine capable of scanning a k-type say m = ( m1, m2, ……….mi,……….mk) 
starting with the first component m1 and go on moving to the right till ith component 

                                                 
 Computability in the formal sense of Church-Turing Thesis has been discussed in other unit.  

Here computability is taken as an intuitive informal notion. 



 
mi is scanned and then writing mi as output.    In view of the type of machines 
available, it can be safely assumed that we can construct a machine to execute these 
activities required for a projection function.  

Recursive Function 
Theory 

  
Next, we define the three structuring rules which are known as  
 
(i) combination  
(ii) composition     and  
(iii) primitive recursion. 
 
Remarks 10   
 
Before providing the definitions for the above–mentioned structuring rules, it may be 
stated that by applying these structuring  rules, to begin with, to the initial functions 
and then by successive applications of these structuring rules to the functions already 
obtained by previous applications, we can construct quite complex functions 
 
(I) Combination as a structuring rule 
  
The combination of two functions 
 g:  Nk  N 
 h:  Nk  N 
 is a function   
         f:  Nk  NxN 
 such that for   (n1,…..nk) = n  ε Nk, 
 f( n ) = (g ( n ), h ( n )).              (22) 
 Then, the function f is denoted by g x h and is called combination of g and h.  
 
Remarks 11 
 
In stead of g: Nk  N and h: Nk  N, we may take g: Nk  Nm and h: Nk  Nn,  and 
then we get a function f: Nk  Nm+n from the definition of f given by   (22). 
 
(II)  Composition as a structuring Rule 
 
Let 
g: Nk  Np                  and 
h: Np  Nq                       for k, p, q  N   
be two given functions.  
Then we define a function  
f : Nk  Nq 

as follows: 
if  (n1, n2, … nk)  Nk  and 
g (n1, n2, … nk) = (m1, m2, … mp)  Np 

 Further, if 
h (m1, m2, … mp) = (t1, t2, … tq) ε Nq   
then  
f: Nk  Nq    is such that 

f (n1, n2, … nk)  
= h(g (n1, n2, … nk))   
= h (m1, m2, … mp) = (t1, t2, … tq)  (23)  

The function f, so defined, is called the composition of g and h and is denoted by h.g 
(Some authors use the notation g·h  instead)  
 

 101

 

 
Examples 12: 
 
(i)  If g : N  N is given by  
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 g(n) = n2     and 
 h : N   N  is given by 
 h(n) = (n + 3) 
Then we define a function 
  f : N   N   such that 
          f = h·g, then 
          f (n) = h (g (n)) = h(n2) = n2 + 3 for all nεN 
 (ii) Functions g and h are as given in Example 12 (i) above. Let us define a function  
 k: N  N 
 such that  k = g·h, then  
 k(n) = g(h(n)) 
 = g(n+3) = (n + 3)2 
 for all n ε N 
 

Ex. 2)  What is the result of applying the function     to 
2

2

2

1

4

1

4

4

four tuple (8,7,4,2)?, where (f X g) (x) = (f(x), g(x)) 
 
Ex. 3)  A function f: N  N is defined as 
 f(0) =  ( )   and 
 f(y) =        f (y – 1) 
 What is the value of f(4)? 
 
Remarks 13 
 
As mentioned earlier the two structuring rules discussed so far, viz, combination rule 
and composition rule, are presented in the literature as a single rule, and is generally 
called as composition rule, which is actually a generalization of our composition and 
combination rules.  We call this rule as Generalised Composition Rule and discuss it 
below: 
 
Let the function  

g: Nk   Np     and 
h1, h2,……, hk   are  k functions with  
hi : Nm   N,  for i = 1,2,……, k 

 
Then we define a function  

f: Nm    Np  such that  for n  = (n1,…..nm) Є Nm 
f( n ) = g (h1 ( n ), h2 ( n ), ….., hk ( n )).                                  (24) 

 
Then f is said to be obtained from g, h1, h2,……, hk by generalized composition or if 
there is no confusion just by composition. 
 
 
Ex.4)  Show that the combination rule given by (22) and composition rule given by  
           (23) are special cases of the generalized composition rule given by (24).  
 
Next, we consider the third structuring rule, viz Primitive Recursion. As the rule 
requires comprehensive discussion, we discuss it in an independent section below. 
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Theory 3.5 INTUITIVE INTRODUCTION TO PRIMITIVE 
RECURSION 

Earlier, we considered the recursive definition of n! for n  N as: 
0! = 1  and 
n! = n  ((n –l)!)  for n  l. 
 
Also, we considered for recursive definition of the exponential xn of x, a real number 
and n  N as: 

x0 = 1   and 
xn = x  xn – 1  for n  1. 

In order to understand the generalization of the recursive definitions considered 
above, let us consider the following example. 
 
Example 14:  As an Intuitive Introduction to Primitive Recursion 

Let us consider a special kind of tree that initially has only one branch, which is 
treated as a new branch. At the end of each year, out of each new branch, m new 
branches grow out (we call m as the branching factor of the tree). And the branch, 
out of which branches grew out once, is no more a new branch. We define a function 
say f which gives the total number of branches in the tree after n years, assuming the 
branching out process continues for ever (or at least for more than n years) at the rate 
of m branches per year. 
 
It is clear that the function f depends on both m and n. In order to facilitate the 
understanding of the process of getting f as a function of m and n, let us initially 
consider m as a constant. Also to begin with, we consider only the function b(n) that 
returns the number of new branches that are generated at the end of the nth year for  
n = 1, 2, ……. Subsequently, b (n) shall be used in computing f (m, n), where 

b(1)  = After one year, number of new branches = m 
b(2)  = After two years, number of new branches. = m . b (1) = m . m = m2  
b(3)  = After three years, number of new branches = m (number of new   
             branches after 2 years) = m3. 

 
Continuing like this,  we get, 

b(n)  = After n years, number of new branches  
 = m(number of new branches after (n – 1) years)  
         = m  b (n –1) = mmn–1  = mn 

 
Next, we consider f(m, n), the number of all branches at the end of n years.  
f (m, 1)  = Total Number of branches after one year  
            = old branches at the end of one year + new branches generated at the     
      end of the first year, i.e., 
f(m, l)  = l + m 
f (m, 2)  = Total number of branches  after two years  

      = Old branches at completion of two years + New branches generated        
       at the end of second year, i.e., 

f (m, 2) = f(m, 1) + m2 

f (m, n)  = Continuing like this, total number of branches after n years  
            = Total number of branches after (n – 1) year + New branches at the end    
                of the nth year, i.e, 

 = f(m, n –1) + m  b(n –1),   i.e, 
f(m, n) = f(m, n – 1) + mn         (25)          
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For a short while, if  we denote f(m, n – 1) as   t  
 Then (25) becomes 
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f(m, n)  = t + mn,        a function of m, n and t, say 

      = h (m, n, t),    for some function  h : N3  N. 
Summerising, we get 
f(m, n)  = h (m, n, t),    for some function h: N3   N. 
    Replacing t by f (m, n-1), we get 
f(m, n)  = h(m, n, f(m, n – 1)) 
 
Thus f(m, n), the number of all branches immediately on completion of n years can 
be defined as: 
f(m, 0)   =1 = m0 

f (m, n)  = h   (m, n, f (m, n – 1)) (26) 
where 
 h (m, n, t)  = mn + t 
 
In order to further generalize the concept of recursion, we consider the same 
problem with a little difference by taking  a  new starting time (i.e., zeroth year) for 
the problem of counting of the number of branches when the tree already has, say,  
1+ m + m2 + m3 branches. (i. e., the initial branch is already 3 years old) and let  
J (m, n) denote the number of total branches after n years  of the new starting time, 
where m is the branching factor. 
  
Then J(m, n) is defined as 

J (m, 0)  = 1 + m + m2 + m3,  which is some function say g(m) of m, i.e.,  
J(m, 0)  =  g(m)       and 
J(m, n +1)  = J(m, n)+mn+4,  
which is some function say L of m, n and J (m, n), i.e, 
J (m, n + 1) =  L ( m, n,  J (m, n)). 
Summarizing, the function J (m, n) may be defined as 
J (m, 0)        =   g(m)     and            (27) 
J (m, n +1)   =   L (m, n,  J(m, n)),                                                                      (28) 
 
for some function g of m and another function L of m, n and J (m, n). 
The above discussion can be generalized still further when instead of one tree, 
initially, we have  k trees  T1, T2, … Tk, s.t. for the ith tree Ti the branching factor is mi 
for i = 1, 2, ..., k. 
 
Also, we assume that different trees started growing (i.e., having their first branches) 
in different calendar years.  After all these trees have started growing, some calendar 
year is taken as starting or zeroth year for the purpose of counting the number of 
branches in all the trees taken together. 
 
Then (27) and (28) can be rewritten as  

Ji (mi, 0)  =   gi (mi) 
Ji (mi, n + 1)  =   Li (mi, n, Ji (mi, n))   for i = 1,  2, ..., k.                 (29) 
(where gi (mi) denote the number of branches, in the zeroth year, of the ith tree whose 
branching factor is mi) 
 
Then total number of branches on all the k trees, after completion of n years after 
the starting year, may be defined by a function F of m1, m2, … mk, and n as follows: 

F(m1, m2, … mk, 0)        =     g1(m1) + g2(m2) + … + gk(mk) = G (m1, m2 ….., mk ),    
for  some function G of m1, m2, … mk,     and 
F(m1, m2, … mk, n + 1)   =    J1 (m1, n + 1) + J2 (m2, n + 1) + ….  + J (mk, n+1)  (30) 
But by (29), each Ji (mi, n +1) is a function of Ji (mi, n) 
If m = (m1, m2, …., mi, …., mk) 
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Theory  
(i)   F ( m , n + 1) is a sum of Ji (mi, n + 1)         by (30) 
 
(ii)  each Ji (mi, n +1) is a function of  Ji ( mi, n) in addition to being a function of  
 mi  and n                                                 by (29) 
 
(iii)  the sum of Ji ( mi, n), 1  i  k, is an expression which can be obtained by 

replacing n + 1 by n in the R.H.S of (30)  and hence, by replacing (n + 1) by n 
in the L.H.S of the equality (30), 

this sum of Ji (mi, n)’s must be of the form F ( m , n) 
In view of (i), (ii) & (iii) above, F( m , n + 1) is some function H of  F ( m , n) in 
addition to being function of mi’ s and n 
 
Then the above definition of F may be rewritten as 

F ( m , 0)  =  G ( m )  and 
 F( m , n + 1)  = H( m , n, F( m ,n))                                                     (31)   
 
This is exactly what, in formal sense, we say that F is obtained from G and H by 
primitive recursion. Restating the above, we get the formal 
Definition: Primitive Recursion 
For k  0, a function 
f:  Nk+1     Nm  
is said to be constructed using primitive recursion from the functions 
 g  :  Nk          Nm               and 
 h  :  Nk+m+1   Nm, 
if,     for x  ε Nk  and y ε N, 

        f( x , 0)  = g ( x )         and 
        f ( x , y +1)   =  h ( x , y, f ( x , y)), (32) 
 
The above discussion about three initial functions viz. the zero-place zero function           
 ( ), the successor function σ and the projections  and about the three 

structuring rules viz. combination, composition given by the discussion preceding and 
including (22), (23) and primitive recursion given by ( 31 ), leads to the following 
definition: 

k

i

 
Primitive Recursive Function: A function f is primitive recursive function if (and 
only if)  either  
 
(i) it is one of the initial functions viz. ξ ( ),  or one of the projections  

           , i   k,     or 
k

i

 
(ii) it is obtained by application of some finite sequence of structuring rules viz 

combination, composition, and primitive recursion to the initial functions. 
 

Remark 15 
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 It is implied in the above definition that if a function f is obtained by a finite sequence 
of application of structuring rules including primitive recursion to some functions (not 
necessarily initial functions) say g1, g2, … gk, each of which has been obtained earlier 
by application of some finite sequence of combination, composition and primitive 
recursion to some of the initial functions, then F must be primitive recursive. The 
implication follows from the fact that F can be obtained from initial functions by first 
applying sequences of combination, composition and primitive recursion to obtain 
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each of g1, g2, … gk,  and then applying a sequence  of combination, composition and 
primitive recursion to get f from g1, g2, … gk. 
 
Examples 16:  All functions considered below are from Nk to N,  for some k  N.  
 
Example 16(i): The well-known binary function plus (m, n) = m + n is primitive 
recursive, because 

Plus (m, 0)      =  (m) 
1

1

Plus (m, n + 1) =   (m, n, plus (m, n)),  for n  0    (33) 
3

3

 
Example 16 (ii):  The well-known binary function Product (written here as prod) and 
given by  
prod (m, n) = m  n is primitive recursive, because 
  prod (m, 0)      = ξ ( ) 
  prod (m, n + 1) = plus ( (m, n, prod (m, n)), (m, n, prod(m, n)))     (34) 

3

1

3

3

 
As plus has already been shown to be primitive recursive, therefore, prod is also 
primitive recursive. 
 
Example 16 (iii): In this example we consider simple funtion say int-plus whose 
domain and codomain are not N but I, the set of all integers including negative 
integers and zero.  We show that the function 
 int-plus : I x I → I 
is primitive-recursive. 
 
The proof is based on the fact that Each integer can be thought of as a member of N2, 
for example, 5 may be thought of as (6, 1) and –5 as ( 1, 6).  In general, (m, n) є N2 
denotes the integer m –– n. 
 
Then the function int-plus : I x I  I can be thought of as 
 
 int-plus : (N x N) x (N x N)  N x N 
 Such that, if (m1, n1) and (m2, n2) ε N x N then 
 int-plus ((m1, n1) , (m2, n2) ) = (m1+ m2,  n1, n2) 
 = (plus (m1, m2), plus  ( n1, n2))                                                                     (35) 
 
Plus is already shown to be primitive recursive and combination of two primitive 
recursive functions (viz plus and plus) is primitive recursive.  Hence the above 
equation ( 35 ) shows that int-plus is a primitive recursive function. 
 
Example 16(iv): The factorial function 

 f(n) = n!                      for nεN, 
is primitive recursive. 
 
The proof follows from the following argument based on Principle of Mathematical 
Induction: 
 
Base Case: 
 for n = 0 
   f(0) = 0! = 0 = ξ ( ) 
 
Induction Hypothesis:  
Let f(p) be primitive recursive 
 
 



 
Induction step: Recursive Function 

Theory f(p + 1) = (p + 1)! = (p!)· (p+1) = f(p)· (p + 1) = prod (f (p), p + 1). 
 
Using Induction Hypothesis and the fact that product is primitive recursive, f (p +1) is 
primitive recursive. 
 
Generalizing the above example, we get the 

Theorem 17: 
Let 
 g: Nk+1  N 
be primitive recursive. 
Then, for an m ε N, the function 
f: Nk+1  N 
given by 

f( n , m) = g(
m

i 0

n , i) = g( n ,0)·g( n ,1)···g( n ,m)       (36) 

with n  = (n1,n2,…nk) ε Nk, 
is primitive recursive 
 
Proof: 
 
We prove the result by Principle of Mathematical Induction on m 
 
Base case:   
When m = 0, by (36), we get 
           f( n , 0) = g( n ,0). 
As g is given to be primitive recursive, the base case follows 
 
Induction Hypothesis:  
for m = p we assume 

 f( n , p) = (g(
p

i 0

n , i)) 

is primitive recursive 
 
Induction Step: 
 Consider 

 f( n , p +1) = (g(
1

0

p

i

n , i)) = (g(
p

i 0

n , i ))· g( n , p + 1) 

       = f( n , p) · g( n , p + 1) = prod (f ( n , p), g ( n , p +1)). 
In view of the Induction Step and the fact that both g and product are primitive 
recursive, we get f( n , p + 1) is primitive recursive. 
 
Definition:The function f, given by (36) above, is said to be obtained from g 
by Bounded Product.  Thus the above theorem may be restated as  
 
Theorem 17: 
Bounded Product of a primitive function is primitive recursive 
 
Ex.5)   Show that each of the following, earlier defined, functions is primitive 

recursive: 
(i) Plus-Prod    (given by equation(8))  

 107

 

 
(ii) Exp 
(iii) New-Plus-Prod-Exp   (given by equation (10)) 
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Ex. 6)   Show that the predecessor function pred: N  N defined as 

            pred(n) =  
1 n  if           1
0 n  if                0

n
             is primitive recursive. 
 

 
We recall the definition of constant functions: 

For each k  0 and each j  0, a constant function C  maps each k-tuple k
j

 (ml, m2, ... mk)  to the fixed integer j,  i.e,  
k
jC  : Nk  N such that C  (mk

j l, m2, ..., mk) = j,       for all (m1, m2, …, mk) ε Nk. 

We show that  are all primitive recursive functions.  To begin with, consider 

the  
ck

j

 
Lemma 18: Each of the functions C  for j  0 is primitive recursive. 0

j

 
Proof:     The proof is presented in two parts: 
 
Case (i) C  is the function which maps a zero-tuple to the constant 0. It is primitive 
recursive, because  

0
0

0
0C  =  

 
Case (ii) Each of the functions  for j  1 is primitive recursive 0

jC

As    = 1 = σ . ξ, c0

1

therefore, c  is primitive recursive 0

1

Again as  =   . c  c0

2

0

1

and  is already shown to primitive recursive, therefore,  is primitive recursive. c0

1
0
2C

We use mathematical induction on j to show C  is primitive recursive for all j.  0
j

 
Base case. For j = 0, we have already shown, that  is primitive recursive. c0

0

 
Induction Hypothesis: Let  is primitive recursive, for any integer m. 0

mC
 
Induction step 

0
1mC  =    By induction hypothesis,  is assumed to be primitive recursive and 

 is primitive recursive and composition of two recursive functions is primitive 
recursive, therefore, C  is primitive recursive. 

0
mC cm

0

0
1m

Hence by Principle of mathematical induction,  is primitive recursive, for all  0
jC

j  N. 

The lemma proves  as primitive recursive only for k = 0. ck

j

The proof for the general integer k follows from the 
 
Theorem 19: The constant functionC , for k  0 and j  0, is primitive recursive. k

j

 
Proof: We prove the theorem by induction on k.  
 



 
Base case:  When k =0, the proof follows from the lemma, in which we proved that 

 is primitive recursive for all j. co

j
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Induction Hypothesis: Assume  is primitive recursive, for all integers j and all 

integers i  p. 
ci

j

 
Induction step:  
Let m  = (m1, m2, ….., mp) ε Np 
Now  (1p

jC m , 0) =  C  (p
j m ), each of the two sides of the equality, is equal to j 

1p
jC  ( m , n + 1) =       (

2

2

p

p m , n, C  ( 1p
j m , n)) 

Hence, the theorem is proved. 
 
Let us try the following exercises 

Ex. 7)   The monus function defined earlier as   

monus (m, n) =  
          otherwise,                      ,0

n  if                n,- mm

 is primitive recursive. 
 
Ex. 8)   Show that following function  

eq (m, n)  =  
           else              ,0
andn     if                ,1 m

is primitive recursive. 
 
Ex. 9)  Show that the function minus: I x I  I,  with 
          Minus (m, n) = m-n for all m, n ε I, 
where I is the set of all integers, is primitive recursive 
 
Ex. 10)  Show that the function 

         ┐eq (m, n) =  
n  m if                 0,
n  m if                 1,

                       is primitive recursive 
 
Ex. 11)  Show that for i εN, characteristic functions 

            Ki ( n) =  
otherwise                   0,

i n  if                   1,

  is primitive recursive 
 
Ex. 12)  Show that the function  
           f: N  N given by 

  f(n) = 12  

otherwise  en                wh8
5 n                 when
0 n   n                whe7

 
  is primitive recursive. 
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Statement 20: The structuring rules viz combination, composition and primitive 
recursion produce computable functions from computable functions. 
 
Like Statement 9 earlier, no formal proof of the statement is possible.  As earlier, we 
present an informal/intuitive argument in support the apparent truth of the  
Statement (20). 
 
(i)   Composition Rule produces computable functions from computable 

functions 
Let 
 g  : Nk     Nn                     and 
 h  : Nk     Nm 
be computable functions.   
Then value f( n  ) of n  = (n1, n2, ….., nk)  ε Nk 
under  the function f which is the combination function of g and h, is given by  
(g ( n ),  h ( n ) ) 
In other words, if the values g ( n ) and h ( n ) are computable then the additional 
computational effort required is that for putting these values between a pair of 
parentheses separated by a comma.  However, a machine having these additional 
capabilities, in addition to the capabilities of the already existing machines for 
computing g ( n ) and  h ( n ), can easily be constructed. The above informal argument 
supports the claim that combination rule produces computable functions from 
computable functions. 
 
(ii)  Composition Rule produces computable functions from computable 

functions. 
Let 
 g:    Nk    Nm           and 
 h :    Nm   Np 
be computable  and 

x  =  (x1,x2, ….., xk) ε Nk, 
then g being computable produces through a computational process, some m-tuple say 
y  = ( y1, y2, .., ym) ε Nm, 

such that g ( x ) = y  

Next, h is computable function with domain Nm and y  ε Nm. 

Therefore, the process of getting h( y ) from y  is computable. 

 Thus, if we assume computational capabilities already exist for computing g ( x ) and 
 h ( y ), then for computing the value h(g( x )) under the composition function of g and 
h, the only additional computational capability required is that of passing the value  
g ( x ) as an argument to h.  This capability can reasonably be assumed. 
Thus, the computability of the composition structuring rule is justified. 
 
Next, we present an argument for the claim that the structuring rule primitive 
recursion gives computable functions from computable functions.  
Let us recall that a function 
 f  :  Nk+1   Nm 
is said to be constructed using primitive recursion 
from the functions 
 g  :  Nk   Nm               and 
 h  :  Nk+m+1  Nm, 
if,  for x  ε Nk  and y ε N, 
   f( x , 0)  = g ( x )        and  
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    f ( x , y +1)   =  h ( x , y, f ( x , y)),   (32) 
( (32) was used to denote this equation once earlier also). 
 
The claim about computability of f as defined above, is justified by using the 
Priniciple of Mathematical Induction on the argument y of f ( x , y). 
 
Base case,  For y = 0, as g is computable, therefore, for x  ε Nk, g ( x ) and hence 
f ( x , 0) is computable.  
 
Induction Hypothesis:  Let us assume that for x ε Nk, and for some y ε N, f ( x , y) is 
computable. 
 
Induction Step:  In view of the assumption under Induction Hypothesis and the fact 
that h  is given to be computable; for h ( x , y, f ( x , y)) and therefore, for f ( x , y + 1) 
to be computable, the only additional computational capability required is that of 
passing the value of f( x ,y) as an argument to h.  This capability can be reasonably 
assumed. 
 
Thus, we have informally argued in favour of the truth of statement. 
 
 
Theorem 21:  Each primitive recursive function is a total function.     
 
Proof:   We know primitive recursive functions are, by definition 

(a) either initial functions  
(b) or the functions obtained by some finite number of applications of the 

three structuring rules to initial functions.   
 

First, we show initial functions are total: 
By definition 
 
(i) The Zero function: : N0  N, is such that  ( ) = 0  
 Thus  is defined for all elements of its domain N0, which is by            

definition, empty.  Thus,  is a total function.  
 
(ii) the Successor function  : N  N  is such that  
   (x) = x + 1,              for all x ε N, the domain. 
 Thus, successor function is also defined for all elements of its domain N.  Thus 

 is a total function.  
 
(iii) the projection  with i, k  N, and i  k. 

k

i

  is s.t. if  x  = (x1, x2, …. xi, …, xk)  Nk 

  then 
k

i
( x ) =  xi            for all x   Nk, the domain. 

Thus each of the initial functions, is a total function.  
Next, we establish that the structuring rules lead from total functions to total 
functions. 
 
(i) The Structuring Rule:   Combination 
   Let   g: Nk  Nm  

         h: Nk  Nn  
           .  be two total functions, for which f: Nk  Nm+n is such that 
      f = g X h  

 111

 

  Then by definition of total,  for each x  = (x1,  x2, ... xi,... xk)    Nk   

   y   = (y1,  y2, ... yi,... yk)    Nm  such that  
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   z  = (z1, z2,….zi,…,zn) ε Nn  such that 
  h( x ) = z  
 Thus for each x  ε Nk  
 (g( x ), h ( x )) ε Nm+n 
 Therefore f = g x h is total, and hence, combination of two total functions is 

total. 
 
(ii) The Structuring Rule: Composition  
 Let functions 
  g: Nk  Nm      and 
  h: Nm  Nn  
           be total and f = h·g 
 Then by definition of total,  for each x  = (x1,  x2, ... xi,... xk)    Nk   
  y   = (y1,  y2, ... yi,... yk)    Nm  such that  

 g( x ) = y   and  
 
further, as h from Nm to Nn is a total function, therefore, for each y  in Nm, there is a 

z  in Nn such that h( y  ) = z . 

But then for each x   NK,   z  Nn 

 such that (h ·g) ( x ) = h(g( x  )) = h( y ) = z    Nn 
Therefore, f = h·g: Nk  Nn is a total function if g and h are total functions.  
 
(iii)  The structuring rule: primitive recursion  
 Let f: Nk + 1  Nm be a primitive recursive function which is obtained from the 

two already defined total functions viz 
  g : Nk  Nm and 
    h : Nk+m+1  N, 
 as follows: 
    f( x , 0) = g( x ) and  (37) 
    f( x , y + 1) = h( x , y, f( x , y))   for x   Nk  (38) 
 
Let z  = (x1, x2, …  xk, xk+1) be an arbitrary element of Nk+1.  We show by induction on 
the (k + 1) th component of z  that f is total, given that  both g and h are total.  
 
Base Case: When xk+1 = 0 
Then from (37), using the fact that g is total we get that f is defined for all 
 (x1, x2, …  xk, 0) with (x1, …  xk)  Nk 
 
Induction Hypothesis: Let us assume that for all x  = (x1,  …,xk )  Nk and for y εN, f 
is defined for (x1,  …  xk, y). 
 
Induction step: Using the above induction hypothesis and the fact that h is total, the 
R.H.S of (38) above is defined for all x   and y.  Hence the L.H.S. of (38), i.e,   
f( x , y+ l) is  total on Nk+1. 
 
Hence, primitive recursion leads from total functions to total functions.  
Thus, we see that all primitive recursive functions must be total and, as mentioned 
earlier, computable also. 
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Theory 3.6 PRIMITIVE RECURSION IS WEAK     
         TECHNIQUE 

It is natural to ask whether class of all primitive recursive functions cover all 
computable functions or not? Or in other words, every function, which can be 
accepted as  computable, is also primitive recursive? 
 
The answer to the above is no, which is substantiated by the following 

Theorem 22: (i)  There are computable functions which are not primitive recursive, 
and even, 

     
(ii)  there are total computable functions which are not primitive 

recursive. 
 
Proof:  In order to establish the above, it is sufficient to give an appropriate example 
for each of the two results. 
Example for Theorem part (i) We have established that a primitive recursive function 
is necessarily total.  Hence a function which is not total can not be primitive 
recursive. 
 
Consider the following function, which has been discussed earlier.  
Quot : N  N  N 
s.t. 
 

Quot (x, y) =   
  0 y  if                   undefined

y k  0for                                   
k z .y   x and 0 y  if                                 z

 
is not total, i.e., is strictly partial. Hence Quot can not be primitive recursive function. 
Example for Theorem part (ii) 
 
The Ackermann’s function A : N  N  N defined below is total and computable 
function but not primitive recursive. 
 
  A (0, y) = y + 1 
  A (x + 1, 0) = A(x, 1) 
  A(x + 1,y + l) = A(x, A(x +1, y)) 
 
The proof, that A is total and computable but not primitive recursive, is beyond the 
scope of the course.  
 
Existence Theorems & Their Constructive/Nonconstructive Proofs 
 
Many a theorem is an assertion about the existence of objects(s) of a particular type.  
For example, the assertion, CUBE_SUM: ‘There is a positive integer, which can be 
written as the sum of two cubes of positive integers in two different ways’, if proved 
true is an example of an existence theorem.  There are two ways of proving an 
existence theorem viz through 
 
(i) a constructive proof 
(ii) a non-constructive proof. 
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A constructive proof of an existence theorem is actually about showing  an object of 
the required type.  E.g,   writing 
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1729 = 103 + 93 = 123 + 13, 
 
provides a constructive proof of the CUBE –SUM assertion.  
 
In many cases of existence theorems, either it is quite difficult to produce a 
constructive proof or the constructive proof is not known, then we use a 
nonconstructive method to prove an existence theorem. 
 
Non–Constructive Proof:  Sometimes, we do not (rather we are unable to)  show the 
existence of an object of the required type. In such cases, we prove an existence 
theorem by some non-constructive method of establishing the truth of the existence 
theorem. A non-constructive method shows that some element of the required type 
must exist, but the method is not able to tell exactly which is the element of the 
required type.  We give below two examples of non-constructive proofs of existence 
theorems.  
 
The first non-constructive existence proof is about the claim: The polynomial 
equation   

 5x1001+ 23 x93 + 37 x17 + 52x – 88 = 0  
has a real root.  
 
The truth of the claim is based on the following well-known result:   

A polynomial equation p(x) = 0 of degree n and having real coefficients, has n 
complex roots (not necessarily all distinct) and for each complex root a + ib with b  
0, a – ib is also a root of P (x) = 0. 
 
As a consequence, if P(x) is odd degree, it must have a real root.  However, it is quite 
difficult to find out the real number, which is a real root of the given polynomial 
equation given above. 
 
The next non-constructive proof is about a well-known result: These exist 
irrational numbers x and y such that xy is a rational number.   
 
The following argument establishes the truth of the above result:  We know 2  is an 
irrational number, but we do not know whether  ( 2 ) 2  is irrational OR not.  If  
( 2 ) 2  is rational then x and y each equal to 2  are the required rational 
numbers.  However, if ( 2 ) 2 is irrational then x = ( 2 ) 2  and y = 2  are 
two irrational numbers such that (( 2 ) 2 ) 2 = ( 2 )2 = 2 is rational. 
 
However, in the argument above, we exactly do not know whether the required pair is 
( 2 ) 2  and 2  or  2  and 2 . 
 
 
We give below a non–constructive proof of the theorem:  There is a total 
computable function which is not primitive recursive. 
 
Second Proof of Theorem 21 (ii) 
 
All the functions in the following argument are assumed to be of the form  
f: N  N. only.  Let us assume that the above statement is false, i.e, we assume that 
every total computable function is primitive recursive.  Then, we use Cantors’  
Diagonalization Method, (as is used in showing the existence of a non-rational real 
number) to arrive at a contradiction. 
 



 
The representation of a primitive recursive function is obtained by applying finite 
number of times the  structuring rules to the initial functions ξ, σ, .  The 

representation of a function which is obtained by an application of a structuring rule 
to initial functions gives the function as a finite sequence of symbols, e.g, 

k

i
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 σ . (m
k

i 1, …., mk) uses only finitely many symbol.  Each structuring rule adds only 

finitely many additional symbols to get the representation of a  new function from that 
of already defined function.  Thus each primitive recursive function must be 
representable as a finite sequence of symbols.  We arrange the primitive recursive 
functions according to the number of symbols in the sequence representing the 
functions,  starting with the one with least number of symbols in it, followed by the 
one having least number of symbols among the remaining.  Among function 
represented by equal number of symbols, we use dictionary type of ordering.  Thus, 
all the sequences of symbols representing the primitive recursive functions can be 
written in the form of an ordered table starting at the top with a function having least 
number of symbols in its representation.  According to the order of the function in the 
table we name the functions, with the top one named as f1, next as f2 and in general nth 
function in the table being called  fn, 
 
Next, we construct a new function 
 g:  N  N     such that 
 g(n) = fn (n) +1                                                                                 (39) 

 
In other words, the value under function g of the argument n ε N, is obtained by 
taking value under the nth function fn of n and then adding 1 to it. 
As fn is primitive recursive for each n, the value fn(n) exists and is obtainable in finite 
number of steps.  Also, adding 1 is only one additional step to get g(n) from 
fn (n).  Also as fn  is total, therefore for each nεN, fn(n) exists and hence fn(n)+1 exists 
and hence for each nεN, g (n), being equal to fn(n)+1, exists. Thus g(n)  is also total 
and computable and its value at n differs from the value of fn, because 

 g(n) = fn (n) +1  fn(n), 
for each fn in the table. 

 
Thus g is not in the table of all the primitive recursive functions, i.e., g is not primitive 
recursive. 
 
The last statement contradicts the assumption that every total computable function is 
primitive.  Hence the assumption is wrong, thereby proving the theorem. 

 
Thus, we have proved that the class of primitive recursive functions is a proper 
subclass of the class of total computable functions. 
Thus primitive recursion as a technique for constructing computable functions is 
weak in the sense that it is not able to construct even such simple functions as Quot. 
The above discussion suggests that the formal technique of primitive recursion should 
be further strengthened, so that, the enhanced formal technique captures all such 
functions which are otherwise, easily seen to be computable. One such technique, 
called unbounded minimalisation, is discussed in the next section. 
 

3.7 THE TECHNIQUES OF UNBOUNDED 
MINIMALISATION, PARTIAL RECURSION 
AND µ-RECURSION   

In order to achieve the goal mentioned in the previous paragraph, we first consider the  
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Definition:  Unbounded Minimalisation 
For a given function  
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g : Nk+1  N 
we define a function 
f: Nk  N such that 
for x  = (x1, x2, …,xk)  Nk  and for some y  N, 
f( x ) equals y     
 
if (and only if) the following conditions are satisfied: 

(i) g( x , y) = 0    and 
 
(ii)  if g( x , z) = 0 then y  z  
 (i.e., y is the smallest among all the values z  N for which g( x , z) = 0) 
 
(iii)  g( x , u) is defined for all u  y, with u   N.    (40) 
 
Further, if, for some x   Nk, such a y does not exist, then f( x ) = undefined. 
Such a function f is said to be obtained from g through unbounded 
minimalization and is denoted as  

f( x ) = y [g( x , y)  = 0] 
 
Example 22: Let g : N  N  N be defined by the following table. 
 
g(0, 0) = 5  g(l, 0) = 5  g(2, 0) = 8                   g(3, 0) = l   
g(0, 1) = 4 g(l, 1) = 6 g (2,3) = 0           g(3, 1) = 2 
 
g(0, 2) = 6 g(l, 2) = 0  g(2, l) = 5            g(3, 2) = 0 
g(0, 3) = 0 g(l, 3) = 3 g(2, 2) = undefined      g(3, 3) = 4 
g(0, 4) = l g(l, 4) = 0 g(2, 4) = 7             g(3, 4) = undefinied 
 
Then 
 f(0) = 3 
f(1) = 2   (though g(1, 4) = 0 also, but 2 is the minimum k such that f (1, 2) = 0) 
f(2) =    is not defined, because g (2,3) =0, yet g (2,n) is undefined for n = 2 
             which  is less than 3. 
f(3) = 2 (though g(3, 4) is undefined for y = 4 but then 4 > 2 and g(3, 2)=0) 
 
As can be seen from the above example, minimalisation can be defined for functions 
that are undefined for some values of the domains. Also, minimalisation may produce 
functions that are undefined for some values of the domain. 
 
Also, unbounded minimalization may lead from total functions g: Nk+1  N to 
partial functions     f: Nk  N.  
 
For Example 23: 

g (n, m) =    

   otherwise                              n,
10 n   mfor                               0,

10 n   m allor                         1,m f

Then obviously g: NxN  N is total, but, f: N  N is such that f (n) is not defined for 
n  11.  
 
Also the converse may happen, i.e., unbounded minimalization may lead from 
some partial functions g: Nk+1  N to total functions f: Nk  N. For example 
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Theory Let g(n, i)=  
n   if                   undefined
n  ior                           

i
fin

 
Then we can see that f (n) = n       for all n  
Thus unbounded minimalisation leads from a strictly partial function g to a total 
function f. 
 
Using the technique of unbounded minimalization, we extend the set of computable 
functions to the class of  µ-recursive Functions, also called Partial Recursive 
Functions. The new class includes the class of Primitive Recursive Functions as its 
proper subclass. 
 
Remarks24  
 
The reason for the use of the adjective unbounded before minimalization lies in the 
fact that, there is no bound, on the argument, upto which we are required to try to find 
a y, which satisfies (i) and (iii) under (40). 
Remark 25 
 
Problems with unrestricted application of unbounded minimalisation to a primitive 
recursive function. 
 
If g is an arbitrary primitive recursive function, then there is no general method of 
telling whether a y that satisfies all the three conditions of unbounded minimalisation 
given by (40), exists.  In other words, unbounded minimalisation applied to an 
arbitrary primitive recursive function, may not yield a function which may be 
computable in any intuitive sense (the proof of the claim is beyond the scope of the 
course). 
 
Remark 26 
 
Bounded Minimalisation:  On the lines of the definition of unbounded 
minimalisation, we can define bounded  minimalisation, for a given integer, m, of 
a partial function 
 g: Nk+1 N 
as a function 
 f: Nk+1  N         such that 
for x  = (x1, x2, …., xk) ε Nk,  m ε N  
and y εN with y  m 
 f( x , m)  equals y 
if (and only if ) the following conditions are satisfied: 

(i) g ( x , y) = 0 
 
(ii) if g ( x , z ) = 0 then y  z 
 (i.e, y is the smallest among all values z ε N for which g ( x , z) = 0) 
 
(iii) g ( x , u ) is defined for all u  y with u ε N 
 
Further, if, for some x  ε Nk, such a y (  m), does not exist, then  
f( x ) = undefined. 
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Such a function f is said to be obtained from g through bounded minimalisation 
and is denoted as  
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However, through the following theorem, we show that bounded minimalization is 
not a powerful technique to extend the class of primitive recursive functions to more 
general class of computable functions. 

Theorem 27:  If the function f ( x , m) is obtained by bounded minimalization for a 
given integer m and when applied to only primitive recursive function g ( x , y), then f 
( x , m) must be primitive recursive  (however, only the last value may be ‘undefined’). 

 
Proof: Define the functions 
 hi ( x )  :  Nk   Ni+1 
 
as follows: 

h0 ( x )  =  g ( x , 0) 
h1 ( x )  =  (g ( x , 0),   g2 ( x , 1)) 

 
As h1 ( x ) is obtained by combination rule applied to values of a primitive recursive 
function g ( x , y), therefore, h1 ( x ) is a primitive recursive function. 
Next, consider 
 
h2 ( x ) = (h1 ( x ) ,  g ( x , 2)) 
 
Again as h2 ( x ) is obtained by applying combination rule to two primitve recursive 
functions h1 ( x ) and g ( x , 2) therefore, h2 ( x ) is primitive recursive. Continuing like 
this, the function h1( x ) ….. hm ( x ) are all primitive recursive functions. But 
hm ( x ) = (…(f ( x , 0), g ( x , 1)), g( x , 2))…, g ( x , m)) 
 
Thus for any x , we can compute the row of values g ( x , 0), …… g ( x , m) can find 
the minmum i ≤ m, if it exists, with g ( x , i) = 0 
 
However, if  such an i does not exist then also we able to determine that f ( x , m) is 
‘undefined’.  Thus, we can say that bounded minimalizations of a primitive 
recursive function is primitive recursive 
 
Remarks 28   
 
At this stage, it is important to note that in unbounded minimalization, the number m 
is not given and hence, in the case of f ( x ) the unbounded minimalization of a given 
primitive function g ( x , y), we can not know when to stop finding values g ( x , 0), 
g ( x , 1)……….., if all these values happen to be non-zero, before declaring f ( x ) as 
undefined. 
 
Therefore, we can not claim that the unbounded minimalization of a primitive 
recursive function is primitive recursive. 
 
Remarks 29  
 
We already know that primitive recursion is a weak computational technique in the 
sense that it is not able to show even div as computable function.  Further, through  
 
Theorem 30: we show that Bounded Minimalisation produces only primitive 
recursive functions from primitive recursive functions.  Thus Bounded 



 
Minimalisation can not be used as a technique to extend primitive recursion to more 
powerful computational technique. 
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Also, under Remarks25, we mentioned that Unbounded Minimalization though is  
more powerful technique, yet, its unrestricted application may lead to functions which 
may not be computable in any intuitive sense. Thus we have to find a technique which 
is a restriction of unbounded minimalisation but is an extension of Bounded 
Minimalisation.  The technique  to be described is called µ-recursion or partial 
recursion.  The discussion of partial recursion requires  introduction of a number of 
concepts including the  
 
 
Definition: Regular Function 

A function 
 f: Nk+1  N 
is said to be regular if (and only if) 
for each n  ε Nk, there is an m such that 
 f( n , m) = 0 
In view of the fact that unbounded minimalization may lead from total functions to 
strictly partial functions, therefore, we need to generalize our definitions of 
combinations, composition of functions and that of primitive recursion so as to be 
applicable to strictly partial functions also. 
 
Generalized/New) Combination Rule 

Let 
 g: Nk  Nm                and 
 h: Nk  Nn 
 
be two partial functions.  Then the composition partial function  
 f:  Nk  Nm+n 
is defined as follows: 
 
If x = (x1, …., xk) ε Nk 
f( x ) = (g( x ), h( x )),  
and both the values g ( x ) and then h ( x ) are defined; else f( x ) is undefined. 
 
(Generalized/New) Composition Rule 

Let  f: Nk  Np    and 
   g: Nm  Np 
be partial functions then 

g · f : Nk  Nm  
is given as follows: 
 
Let x  = (x1, x2, …  xk,)  Nk   
Then (g · f) ( x ) = (g (f ( x ))), if both f( x ) and g (f ( x )) are defined, else g·f is 
undefined. 
 
Similarly, we have the 
 
(Generalized/New) Primitive Recursion: 
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Given the partial functions  
g : Nk  N and 
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h : Nk +2   N  
 
then a (partial) function  
f: Nk+1  N 
is said to be obtained through partial recursion from g and h, if 
f ( x , 0) = g( x ),  
including ‘undefined’ as a possible value for g as well as f and  
f( x , y + 1) = h ( x , y, f( x , y)),  
which will have the value ‘undefined’ if either f ( x , y) is ‘undefined’ or if f( x , y) is 
defined but h( x , y, if( x , y)) is ‘undefined’. 
Now, we define below the concept of µ-recursion, which as a technique for 
constructing more complex computable functions, subsumes partial recursion and is 
more powerful a technique than primitive recursion. 
 
Definition: A µ-recursive function is a partial function (including a total function) 
that can be constructed from the initial functions by a   finite number of  
applications of the (i) combinations, (ii) compositions, (iii) primitive recursions and 
(iv) unbounded minimalization to (only) regular functions. 
Remarks 31 
 
The fact of primitive recursion technique is a special case of µ-recursion technique, 
easily follows from the fact that any primitive recursive function f is obtained by finite 
numbers of applications of (i) combination (ii) composition and (iii) primitive 
recursion to initial functions.  But then by definition of µ-recursion, f must be 
 µ-recursive function (ii) However, µ-recursion is strictly more powerful a technique 
than primitive recursive from the facts that div is not primitive recursive but is µ-
recursive as follows from 
 
Example 32:  Show the function quot: N2  N defined earlier as 
div (x, y) = {integer portion of x/y if y  0, undefined if y =0}, 
         is µ-recursive, but not primitive recursive. 
 
Hint:  quot is µ-recursive, as 
          quot (m, n) = µ t [((m + 1) (prod (t, n) + n)) = 0] 
         Futher div is a partial function, therefore, it can not be primitive recursive. 
 
Ex. 13)  Show that the function SQRT: N N such that SORT (x) = y if and only if   
              x = y2, is µ-recursive but not primitive recursive.  

Finally we come to the end of this unit with Church’s Thesis which states: The class 
of µ-recursive functions contains all computable functions. Church’s thesis about  
µ-recursive functions is parallel of Turing thesis about Turing Machines.  Church’s 
thesis claims that the µ-recursion technique is ultimate in constructing computable 
function in the sense that if a function is not µ-recursive then it can not be computable 
by any formal technique.  As mentioned in the previous unit, similar claim is made by 
Turing Thesis about Turing Machine Model.  We repeat the claim of Turing Thesis: 
Turing Machines possess the power of solving any problem that can solved by any 
computational means.  In the next unit, we discuss the equivalence of the two theses 
giving rise to what is commonly known as Church-Turing Thesis. 
 

 

3.8 SUMMARY 

In this unit, we introduced the Theory of Recursive Functions, which is a declarative 
approach to the study of computational phenomenon. We started with some examples 
of recursive definitions of some functions.  Then we introduced the concepts of initial 
functions and primitive recursion followed by the concept of primitive recursive 



 
function.  An example to motivate the student for the understanding of the concept of 
primitive recursion, was given before the introduction of the concept of primitive 
recursion.  Next, we exhibited that primitive recursion is not strong enough a 
technique to  capture the computational phenomenon, in the sense that some of even 
elementary functions, though easily seen to be computable, are not primitive-
recursive.  Then the notion of total computable functions which subsumes the concept 
of primitive recursive function was introduced, that captures more functions which are 
intuitively computable.  But again it was shown that even the concept of total 
computable function  is not satisfactory in capturing a number of functions which are, 
intuitively and even formally, computable.  Finally, we discussed µ-recursion using 
unbounded minimalization technique to capture essentially all the functions which can 
be shown to be computable by any formal means. 

Recursive Function 
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Also, we established the following inclusion  relation ( ) between various classes as: 
set of Initial Functions  set of Primitive Recursive Functions  set of Total 
computable Functions  set of µ-Recursive Function ≤ set of partial recursive 
function ≤ set of all (partial) functions. 
 

3.9 SOLUTIONS/ANSWERS 

Exercise 1    For a function f:  X Y to be total, we need to show that for each  
                     element x   
                    of the domain X, there is an element y of the codomain Y such that  
                   f(x) = y  
 
  ξ is total :  ξ :  N  N is such that for each n ε N, the domain there exists 

0 ε N, the codomain, such that ξ (n) = 0.  Hence ξ is total 
  σ is total: 
  σ  :  N  N is such that for each n ε N, the domain, there exists n + 1 ε 

N, the codomain, such that  
  σ (n) = n + 1. 
  Therefore σ is total 
  

k

i
 1 ≤ i≤ k, is total :    By definition 

  
r

i
:   Nk   N 

  is such that 
  for an arbitrary element (n1, n2, …… nk) of the domain Nk,   
  

k

i
( n1, n2, .., ni, …,nk) = ni  

  Hence 
k

i
is total. 

 
Exercise 2 Consider 

 =      (8, 7, 4, 2) 
2

2

2

1

4

1

4

4

 =       
2

2

2

1

4

1

4

4
2) 4, 7, (8,2) 4, 7, (8,

 =    (8,2) 
2

2

2

1

 =    
2

2

2

1
)2,8()2,8(

 = (2,8) 
 
Exercise 3 f(4) =  3  f(3) 
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 =  3  ( 3   f(2)) 
 = ( 3  3)  (f(2)) 
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 = 6  ( 3   f(1)) 
 = 9  ( 3   f(0)) 
 = 12   f(0) = 12 

 
Exercise 4  Hint: n(24),  take k = 2, and g as identity function g: NxN  NxN  i.e, 
 g(n1, n2) = (n1, n2 )   for all n1, n2 ε N. 
 Then (24) takes the form f ( n ) = g (h1 ( n ), h2 ( n )) = (h1 ( n ), h2 ( n )) for 

all n  ε Nm, 
 Which gives f as combination of  h1 and h2. 
 Again take k=1 and we get f as the Composition of h1 and g. 
 
Exercise 5  (i)  For m, n ε N 
 Plus-Prod (m,n) = (Plus (m,n), Prod (m,n)) 
 Plus and Prod are already shown to be Primitive recursive.  And 

combination of primitive recursive functions gives a primitive recursive 
function.  Hence the proof 

 
       (ii) Exp is primitive recursive follows from the following 
  Exp (m,0) = σ . ξ  ( ) and  
  Exp (m, n + 1) = prod  ( (m, n, Exp (m, n)), (m, n, Exp (m, n) 

3

1

3

3

 
        (iii) Hint: on the line of Exercise 5 (i) 
 
Exercise 6  Pred (0)  = ξ ( ) 
 Pred (1) = ξ 
 Pred (n + 1) = σ (n, pred (n)) 

2

2

 
Exercise 7   monus (m, 0) = m 
           monus (m, n + 1) = pred (monus (m, n)) 
 
Exercise 8   It can be easily verified that 
 
 Eq (m, n) = 1  ((m  n) + (n  m)), 
 which in formal notation turns out to be  
 Eq (m, n)  = monus (σ ξ ( ), plus (monus (m, n), monus (n, m)) 
                 = (monus    monus  ))) ( m, n) 

2

2

2

1

2

1

2

2

 
For example 
 
Eq (4, 1)    =  1  ((4 1) + (1  4)) 
 =  1  (3 + 0) 
 =  0 
Again 

            
Eq. (4, 4)  = 1  ((4  4) + (4  4)) 
  = 1  (0 + 0) = 1 
 
Exercise 9  Each integer can be thought of as a member of N2, for example, 5 may be    
            thought of as  
            (6, 1) and –5 as ( 1, 6).  In general, (m, n) є N2 denotes the integer m - n. 
 
Then the function minus: I x I  I can be sought of as 
minus: (N x N) x (N x N)  N x N such that if (m1, n1) & (m2, n2) є N x N then  
 
minus ((m1, n1) & (m2, n2)) 



 
= (m1 + n2, n1 + m2) Recursive Function 

Theory  = (plus (m1, n2 ), plus (n1, m2))                                                    (39) 
 
Plus is already shown to be primitive recursive and combination of two primitive 
recursive functions (viz plus and plus) is primitive recursive.  Hence the above 
equation ( 39 ) shows that minus is a primitive recursive function. 
 
Exercise 10 Hint 

 ┐ eq = monus. (  x eq) c2

1

 
 
Exercise 11 Hint 

 
Ki  = monus (Ii, Ii-1 ) 
Where 
Ij (m) = eq (m  j, o) 

 
Exercise 12 Hint 

 
f = mult (7, ko) + mult (12, k5) + mult (8, mult ( ┐Ko, ┐k5)) 
 

Exercise 13 As SQRT is a strictly partial function, therefore, SQRT is not primitive  
                    recursive. 
 
Further as SQRT (x) = µ t[(1 Eq (x, prod (t,t)))=0], therefore, SQRT is µ-recursive. 
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