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Pseudo-random numbers

• Almost random numbers!
• Actually, they are “computer-generated random numbers.”
• Not truly random because there is an inherent pattern in any 

sequence of pseudo-random numbers.
• Lot of mathematics goes into building pseudo-random number 

generators (algorithms) so that the output is sufficiently 
“random”.

• Most of these algorithms generate U(0,1) pseudo-random 
numbers.
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Pseudo-random numbers

• John von Neumann (1951):
“Any one who considers arithmetical methods of producing 

random digits is, of course, in a state of sin….There is no such 
thing as a random number – there are only methods to produce 
random number…We are dealing with mere ‘cooking recipes’ 
for making digits.”

“These recipes …should be judged merely by their results. Some 
statistical study of the digits generated should be made, but 
exhaustive tests are impractical. If the digits work for one type 
of problem, they seem usually to be successful with others of 
the same type.”
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Random number generators

Properties of a “good” generator:
1. The number should appear to be distributed uniformly on 

[0,1] and should not exhibit any correlation.
2. Fast and avoid need for lot of storage.
3. Able to reproduce a given stream of random numbers 

exactly. Why?
4. Provision for producing several separate streams of random 

numbers.
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Linear Congruential Generators (LCG)

• Let X0 be the seed value (initial value of the sequence).
• Then the next values are generated by:

• a = the multiplier; c = increment; and m = modulus.
• Obviously, Xn can take values: 0, 1, … m-1.
• The U(0,1) pseudo-random number is generated by Xn/m.
• Values of a, m, and c are chosen such that LCG satisfies the 

properties of “good” generator.
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Linear Congruential Generators (LCG)

• For a 32-bit computer, typical values of the parameters are:     
a = 75 = 16,807 and m = 231 -1.  c should be such that the only 
positive integer that (exactly divides) both c and m is 1.

• LCG is bound to “loop.”
• Whenever, Xi takes on a value it had previously taken, exactly 

the same sequence of values is generated and cycle repeats.
• The length of the cycle is called period of a generator. 
• Length of the period can almost be m.
• If in fact the period is m, then it is called full period LCG.
• If the period is less than m, the cycle length depends on X0. 
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Testing random number generators

Uniformity test
• Check whether the values are uniformly distributed between 0

and 1. 
• As before, we employ a chi-square test statistic to compare the 

observed frequency and expected frequency of observations in 
an interval. 

• We create k intervals and count the number of times the 
observation falls in a particular interval. If the r.v. generated 
are U(0,1), the expected frequency should be same for each 
(equal-sized) interval.
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Testing random number generators

Serial test
• Generalization of the chi-square test in higher dimensions. If 

individual values are uniformly distributed, then the vector in 
d-dimensions should be uniformly distributed over a hyper-
cube [0,1]d.

• Alternately, if individual values are correlated, the distribution 
of the d-vectors will deviate from d-dimensional uniformity.

• Thus, serial test indirectly tests for independence of individual 
observations.
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Testing random number generators

Runs test
• Directly tests for independence.
• We examine the sequence of values for unbroken 

subsequence of maximal length within which the Ui’s grow 
monotonically. Such a sequence is called run up. 
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Testing random number generators

• The test statistic is calculated as: 

where A and b are given matrices. 
• Turns out that the test statistic R has chi-square 

distribution. 
• So this calculated value can be compared with the tabular 

value to check for the hypothesis of independence.
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Generating random variates

• Activity of obtaining an observation on (or a realization of) a 
random variable from desired distribution.

• These distributions are specified as a result of activities 
discussed in last chapter.

• Here, we assume that the distributions have been specified; 
now the question is how to generate random variates with this 
distributions to run the simulation experiment.

• The basic ingredient needed for every method of generating 
random variates from any distribution is a source of IID U(0,1)
random variates. 

• Hence, it is essential that a statistically reliable U(0,1) random 
number generator be available.
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Requirements from a method

Exactness
• As far as possible use methods that results in random variates 

with exactly the desired distribution.
• Many approximate techniques are available, which should get 

second priority.
• One may argue that the fitted distributions are approximate 

anyways, so an approximate generation method should suffice. 
But still exact methods should be preferred. 

• Because of huge computational resources, many exact and 
efficient algorithms exist.
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Requirements from a method

Efficiency
• Efficiency of the algorithm (method) in terms of storage space 

and execution time. 
• Execution time has two components: set-up time and marginal 

execution time. 
• Set-up time is the time required to do some initial computing 

to specify constants or tables that depend on the particular 
distribution and parameters.

• Marginal execution time is the incremental time required to 
generate each random variate.

• Since in a simulation experiment, we typically generate 
thousands of random variates, marginal execution time is far 
more than the set-up time.
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Requirements from a method

Complexity
• Of the conceptual as well as implementational factors.
• One must ask whether the potential gain in efficiency that 

might be experienced by using a more complicated algorithm 
is worth the extra effort to understand and implement it.

• “Purpose” should be put in context: a more efficient but more 
complex algorithm might be appropriate for use in permanent 
software but not for a “one-time” simulation model.

Robustness
• When an algorithm is efficient for all parameter values.
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Inverse transformation method

• We wish to generate a random variate X that is continuous 
and has a distribution function that is continuous and 
strictly increasing when 0 < F(x) < 1.

• Let F-1 denote the inverse of the function F.
• Then the inverse transformation algorithm is:
1. Generate U ~ U(0,1)
2. Return X = F-1(U).

• To show that the returned value X has the desired 
distribution F, we must show                             . How?{ } )(Pr xFxX =≤
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Inverse transformation method

• This method can be used when X is discrete too. Here,

where, p(xi) = Pr{X = xi} is the probability mass function.
• We assume that X can take only the values x1, x2,… such that 

x1 < x2 < …
• The algorithm then is:
1. Generate U ~ U(0,1).
2. Determine the smallest integer I such that                  , and 

return X = xI.
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Inverse transformation method

Advantages:
• Intuitively easy to understand.
• Helps in variance reduction.
• Helps in generating rank order statistics.
• Helps in generating random variates from truncated 

distributions. 

Disadvantages:
• Closed form expression for F-1 may not be readily available 

for all distributions.
• May not be the fastest and the most efficient way of generating 

random variates.
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Composition 

• Applicable when the desired distribution function can be 
expressed as a convex combination of several distribution 
functions.

The general composition algorithm is:
1. Generate a positive random integer J such that:

2. Return X with distribution function Fj.
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Acceptance-Rejection technique

• All the previous methods were direct methods – they dealt 
directly with the desired distribution function.

• This method is a bit indirect.
• Applicable to continuous as well as discrete case.
• We need to specify a function t such that                          We 

say that t majorizes density f. In general, function t will not 
be a density function, because: 

• However, the function r(x) = t(x)/c clearly will be a density.
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Acceptance-Rejection technique

• We should be able to (easily) generate a random variate Y
having density r (using one of previous methods). 

The acceptance-rejection algorithm is:
1. Generate Y having density r. 
2. Generate U ~ U(0,1) independently of Y.
3. If                             

Otherwise, go back to Step 1 and try again. 
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Generating continuous random variates

Uniform (a,b)
Using inverse-transform method 
1. Generate U ~ U(0,1).
2. Return X = a + (b-a) U.

Exponential (β)
Once again, using inverse transform method
1. Generate U ~ U(0,1).
2. Return X = - β ln(U).
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Generating continuous random variates

Normal – N(0,1)
• Earliest method from 1958 (still very popular)
1. Generate U1,U2 as IID U(0,1).
2. Set

• Drawback: If U1 and U2 are generated using adjacent 
random numbers from LCG, then X1, X2 are not truly 
independent. 
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Generating continuous random variates

Normal – N(0,1)
Polar method
1. Generate U1,U2 as IID U(0,1). 

2. If W >1, go back to Step 1. Otherwise let  
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Generating random variates from 
empirical distribution

• For empirical distribution from exact data, recall that:

• Algorithm:
1. Generate U~U(0,1)
2. Let P = (n-1)U and let 
3. Return:  
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Generating random variates from 
empirical distribution

For the grouped data.
1. Generate U ~ U(0,1).
2. Find the non-negative integer J (                    ) such that

3. Return:  
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Generating discrete random variates

Bernoulli (p)
1. Generate U ~ U(0,1).
2. If            , return X = 1; otherwise X = 0.

Is this a inverse transform method?

Binomial (n,p)
1. Generate Y1, Y2, …, Yn as IID Bernoulli (p) random variates. 
2. Return X = Y1 + Y2 + …+ Yn.
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Generating discrete random variates

Discrete Uniform (i, j)
1. Generate U ~ U(0,1).

2. Return

No search is required. We can compute and store ( j-i+1) ahead 
of time to reduce computation time. 

This is exactly the inverse transform method, too! 
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Generating discrete random variates

Poisson (λ)
1. Let a = e- λ, b = 1 and i = 0.
2. Generate Ui+1 ~ U(0,1) and replace b with bUi+1. If b < a, 

then X = i. Otherwise go to step 3.
3. Replace i with i +1 and go back to step 2. 
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