

BIJU PATNAIK UNIVERSITY OF TECHNOLOGY,

ODISHA

Lecture Notes

On

Prepared by,

Dr. Subhendu Kumar Rath,

BPUT, Odisha.

Random Number Generation

Random Number Generation

Pseudo-random number
Generating Discrete R.V.

Generating Continuous R.V.

Pseudo-random numbers

• Almost random numbers!
• Actually, they are “computer-generated random numbers.”
• Not truly random because there is an inherent pattern in any

sequence of pseudo-random numbers.
• Lot of mathematics goes into building pseudo-random number

generators (algorithms) so that the output is sufficiently
“random”.

• Most of these algorithms generate U(0,1) pseudo-random
numbers.

Dr.Subhendu Kumar Rath

Pseudo-random numbers

• John von Neumann (1951):
“Any one who considers arithmetical methods of producing

random digits is, of course, in a state of sin….There is no such
thing as a random number – there are only methods to produce
random number…We are dealing with mere ‘cooking recipes’
for making digits.”

“These recipes …should be judged merely by their results. Some
statistical study of the digits generated should be made, but
exhaustive tests are impractical. If the digits work for one type
of problem, they seem usually to be successful with others of
the same type.”

Dr.Subhendu Kumar Rath

Random number generators

Properties of a “good” generator:
1. The number should appear to be distributed uniformly on

[0,1] and should not exhibit any correlation.
2. Fast and avoid need for lot of storage.
3. Able to reproduce a given stream of random numbers

exactly. Why?
4. Provision for producing several separate streams of random

numbers.

Dr.Subhendu Kumar Rath

Linear Congruential Generators (LCG)

• Let X0 be the seed value (initial value of the sequence).
• Then the next values are generated by:

• a = the multiplier; c = increment; and m = modulus.
• Obviously, Xn can take values: 0, 1, … m-1.
• The U(0,1) pseudo-random number is generated by Xn/m.
• Values of a, m, and c are chosen such that LCG satisfies the

properties of “good” generator.

()(). mod1 mcaXX nn += −

Dr.Subhendu Kumar Rath

Linear Congruential Generators (LCG)

• For a 32-bit computer, typical values of the parameters are:
a = 75 = 16,807 and m = 231 -1. c should be such that the only
positive integer that (exactly divides) both c and m is 1.

• LCG is bound to “loop.”
• Whenever, Xi takes on a value it had previously taken, exactly

the same sequence of values is generated and cycle repeats.
• The length of the cycle is called period of a generator.
• Length of the period can almost be m.
• If in fact the period is m, then it is called full period LCG.
• If the period is less than m, the cycle length depends on X0.

Dr.Subhendu Kumar Rath

Testing random number generators

Uniformity test
• Check whether the values are uniformly distributed between 0

and 1.
• As before, we employ a chi-square test statistic to compare the

observed frequency and expected frequency of observations in
an interval.

• We create k intervals and count the number of times the
observation falls in a particular interval. If the r.v. generated
are U(0,1), the expected frequency should be same for each
(equal-sized) interval.

Dr.Subhendu Kumar Rath

Testing random number generators

Serial test
• Generalization of the chi-square test in higher dimensions. If

individual values are uniformly distributed, then the vector in
d-dimensions should be uniformly distributed over a hyper-
cube [0,1]d.

• Alternately, if individual values are correlated, the distribution
of the d-vectors will deviate from d-dimensional uniformity.

• Thus, serial test indirectly tests for independence of individual
observations.

Dr.Subhendu Kumar Rath

Testing random number generators

Runs test
• Directly tests for independence.
• We examine the sequence of values for unbroken

subsequence of maximal length within which the Ui’s grow
monotonically. Such a sequence is called run up.

=≥
=

=
.6 6length toup runs ofnumber

5,...2,1 length toup runs ofnumber
i
ii

ri

Dr.Subhendu Kumar Rath

Testing random number generators

• The test statistic is calculated as:

where A and b are given matrices.
• Turns out that the test statistic R has chi-square

distribution.
• So this calculated value can be compared with the tabular

value to check for the hypothesis of independence.

).()(1 6

1

6

1
jj

i j
iiij nbrnbra

n
R −−= ∑∑

= =

Dr.Subhendu Kumar Rath

Generating random variates

• Activity of obtaining an observation on (or a realization of) a
random variable from desired distribution.

• These distributions are specified as a result of activities
discussed in last chapter.

• Here, we assume that the distributions have been specified;
now the question is how to generate random variates with this
distributions to run the simulation experiment.

• The basic ingredient needed for every method of generating
random variates from any distribution is a source of IID U(0,1)
random variates.

• Hence, it is essential that a statistically reliable U(0,1) random
number generator be available.

Dr.Subhendu Kumar Rath

Requirements from a method

Exactness
• As far as possible use methods that results in random variates

with exactly the desired distribution.
• Many approximate techniques are available, which should get

second priority.
• One may argue that the fitted distributions are approximate

anyways, so an approximate generation method should suffice.
But still exact methods should be preferred.

• Because of huge computational resources, many exact and
efficient algorithms exist.

Dr.Subhendu Kumar Rath

Requirements from a method

Efficiency
• Efficiency of the algorithm (method) in terms of storage space

and execution time.
• Execution time has two components: set-up time and marginal

execution time.
• Set-up time is the time required to do some initial computing

to specify constants or tables that depend on the particular
distribution and parameters.

• Marginal execution time is the incremental time required to
generate each random variate.

• Since in a simulation experiment, we typically generate
thousands of random variates, marginal execution time is far
more than the set-up time.

Dr.Subhendu Kumar Rath

Requirements from a method

Complexity
• Of the conceptual as well as implementational factors.
• One must ask whether the potential gain in efficiency that

might be experienced by using a more complicated algorithm
is worth the extra effort to understand and implement it.

• “Purpose” should be put in context: a more efficient but more
complex algorithm might be appropriate for use in permanent
software but not for a “one-time” simulation model.

Robustness
• When an algorithm is efficient for all parameter values.

Dr.Subhendu Kumar Rath

Inverse transformation method

• We wish to generate a random variate X that is continuous
and has a distribution function that is continuous and
strictly increasing when 0 < F(x) < 1.

• Let F-1 denote the inverse of the function F.
• Then the inverse transformation algorithm is:
1. Generate U ~ U(0,1)
2. Return X = F-1(U).

• To show that the returned value X has the desired
distribution F, we must show . How?{ })(Pr xFxX =≤

Dr.Subhendu Kumar Rath

Inverse transformation method

• This method can be used when X is discrete too. Here,

where, p(xi) = Pr{X = xi} is the probability mass function.
• We assume that X can take only the values x1, x2,… such that

x1 < x2 < …
• The algorithm then is:
1. Generate U ~ U(0,1).
2. Determine the smallest integer I such that , and

return X = xI.

{ } .)(Pr)(∑
≤

=≤=
xx

i
i

xpxXxF

()IxFU ≤

Dr.Subhendu Kumar Rath

Inverse transformation method

Advantages:
• Intuitively easy to understand.
• Helps in variance reduction.
• Helps in generating rank order statistics.
• Helps in generating random variates from truncated

distributions.

Disadvantages:
• Closed form expression for F-1 may not be readily available

for all distributions.
• May not be the fastest and the most efficient way of generating

random variates.

Dr.Subhendu Kumar Rath

Composition

• Applicable when the desired distribution function can be
expressed as a convex combination of several distribution
functions.

The general composition algorithm is:
1. Generate a positive random integer J such that:

2. Return X with distribution function Fj.

function.on distributi a is each and ;1,0 where

,)()(

1

1

j
j

jj

j
jj

Fpp

xFpxF

=≥

=

∑

∑
∞

=

∞

=

{ } ,...2,1,Pr === jpjJ j

Dr.Subhendu Kumar Rath

Acceptance-Rejection technique

• All the previous methods were direct methods – they dealt
directly with the desired distribution function.

• This method is a bit indirect.
• Applicable to continuous as well as discrete case.
• We need to specify a function t such that We

say that t majorizes density f. In general, function t will not
be a density function, because:

• However, the function r(x) = t(x)/c clearly will be a density.

.)()(xxtxf ∀≤

.1)()(=≥= ∫∫
∞

∞−

∞

∞−

dxxfdxxtc

Dr.Subhendu Kumar Rath

Acceptance-Rejection technique

• We should be able to (easily) generate a random variate Y
having density r (using one of previous methods).

The acceptance-rejection algorithm is:
1. Generate Y having density r.
2. Generate U ~ U(0,1) independently of Y.
3. If

Otherwise, go back to Step 1 and try again.

.return
)(
)(YX

Yt
YfU =≤

Dr.Subhendu Kumar Rath

Generating continuous random variates

Uniform (a,b)
Using inverse-transform method
1. Generate U ~ U(0,1).
2. Return X = a + (b-a) U.

Exponential (β)
Once again, using inverse transform method
1. Generate U ~ U(0,1).
2. Return X = - β ln(U).

Dr.Subhendu Kumar Rath

Generating continuous random variates

Normal – N(0,1)
• Earliest method from 1958 (still very popular)
1. Generate U1,U2 as IID U(0,1).
2. Set

• Drawback: If U1 and U2 are generated using adjacent
random numbers from LCG, then X1, X2 are not truly
independent.

()
()

).1,0(~,
)ln(22sin

)ln(22cos

21

122

121

NXX
UUX

UUX

−=

−=

π

π

Dr.Subhendu Kumar Rath

Generating continuous random variates

Normal – N(0,1)
Polar method
1. Generate U1,U2 as IID U(0,1).

2. If W >1, go back to Step 1. Otherwise let

.
.2,1 ,12

2
2

2
1 VVW

iUV ii

+=

=−=

IID.)1,0(~, . ;

;)ln(2

212211 NXXYVXYVX
W

WY

==

−
=

Dr.Subhendu Kumar Rath

Generating random variates from
empirical distribution

• For empirical distribution from exact data, recall that:

• Algorithm:
1. Generate U~U(0,1)
2. Let P = (n-1)U and let
3. Return:

()

≤

−=<≤
−−

−
+

−
−

<

= +
+

. 1

1,...2,1,
)1(1

1

 0

)(

)(

)()1(
)()1(

)(

)1(

xXif

niXxXif
XXn

Xx
n
i

Xxif

xF

n

ii
ii

i

 .1+= PI
().)1()()1()(III XXIPXX −+−+= +

Dr.Subhendu Kumar Rath

Generating random variates from
empirical distribution

For the grouped data.
1. Generate U ~ U(0,1).
2. Find the non-negative integer J () such that

3. Return:

10 −≤≤ kJ
() ().1+≤≤ jj aGUaG

[]()
() .

)()(
)(

1

1

jj

jjj
j aGaG

aaaGU
aX

−

−−
+=

+

+

Dr.Subhendu Kumar Rath

Generating discrete random variates

Bernoulli (p)
1. Generate U ~ U(0,1).
2. If , return X = 1; otherwise X = 0.

Is this a inverse transform method?

Binomial (n,p)
1. Generate Y1, Y2, …, Yn as IID Bernoulli (p) random variates.
2. Return X = Y1 + Y2 + …+ Yn.

pU ≤

Dr.Subhendu Kumar Rath

Generating discrete random variates

Discrete Uniform (i, j)
1. Generate U ~ U(0,1).

2. Return

No search is required. We can compute and store (j-i+1) ahead
of time to reduce computation time.

This is exactly the inverse transform method, too!

 .)1(UijiX +−+=

Dr.Subhendu Kumar Rath

Generating discrete random variates

Poisson (λ)
1. Let a = e- λ, b = 1 and i = 0.
2. Generate Ui+1 ~ U(0,1) and replace b with bUi+1. If b < a,

then X = i. Otherwise go to step 3.
3. Replace i with i +1 and go back to step 2.

Dr.Subhendu Kumar Rath

	Random Number Generation
	Random-Number-Generation
	Random Number Generation
	Pseudo-random numbers
	Pseudo-random numbers
	Random number generators
	Linear Congruential Generators (LCG)
	Linear Congruential Generators (LCG)
	Testing random number generators
	Testing random number generators
	Testing random number generators
	Testing random number generators
	Generating random variates
	Requirements from a method
	Requirements from a method
	Requirements from a method
	Inverse transformation method
	Inverse transformation method
	Inverse transformation method
	Composition
	Acceptance-Rejection technique
	Acceptance-Rejection technique
	Generating continuous random variates
	Generating continuous random variates
	Generating continuous random variates
	Generating random variates from empirical distribution
	Generating random variates from empirical distribution
	Generating discrete random variates
	Generating discrete random variates
	Generating discrete random variates

