BIJU PATNAIK UNIVERSITY OF TECHNOLOGY,
ODISHA

Lecture Notes
On

J2EE

Prepared by,
Dr. Subhendu Kumar Rath,
BPUT, Odisha.

J2EE
By Dr.S.K.Rath, BPUT

INTRODUCTION TO SERVLET

Java Servlets are server side Java programs that require either a Web Server or an Application Server for
execution. Examples for Web Servers include Apache’s Tomcat Server and Macromedia’s JRun. Web
Servers include IBM’s Weblogic and BEA’s Websphere server. Examples for other Server programs
include Java Server Pages (JSPs) and Enterprise Java Beans (EJBS). In the forthcoming sections, we will
get acquainted with Servlet fundamentals and other associated information required for creating and
executing Java Servlets.

Servlets are server side components that provide a powerful mechanism for developing server side
programs. servlets are server as well as platform-independent. This leaves you free to select a "best of
breed" strategy for your servers, platforms, and tools. Using servlets web developers can create fast and
efficient server side application which can run on any servlet enabled web server. Servlets run entirely
inside the Java Virtual Machine. Since the Servlet runs at server side so it does not checks the browser
for compatibility. Servlets can access the entire family of Java APIs, including the JDBC API to access
enterprise databases. Servlets can also access a library of HTTP-specific calls, receive all the benefits of
the mature java language including portability, performance, reusability, and crash protection. Today
servlets are the popular choice for building interactive web applications.

Servlets are not designed for a specific protocols. It is different thing that they are most commonly used
with the HTTP protocols Servlets uses the classes in the java packages javax.servlet and
javax.servlet.http. Servlets provides a way of creating the sophisticated server side extensions in a server
as they follow the standard framework and use the highly portable java language.

HTTP Servlet typically used to:

e Priovide dynamic content like getting the results of a database query and returning to the client.

e Process and/or store the data submitted by the HTML.

e Manage information about the state of a stateless HTTP. e.g. an online shopping car manages
request for multiple concurrent customers.

METHOD OF SERVLET

A Generic servlet contains the following five methods:
1. init()

public void init(ServletConfig config) throws ServletException

The init() method is called only once by the servlet container throughout the life of a servlet. By this
init() method the servlet get to know that it has been placed into service.

The servlet cannot be put into the service if

e The init() method does not return within a fix time set by the web server.
e It throws a ServletException

e Parameters - The init() method takes a ServletConfig object that contains the initialization
parameters and servlet's configuration and throws a ServletException if an exception has
occurred.

2. service()

public void service(ServletRequest req, ServletResponse res) throws
ServletException,|OException

http://www.roseindia.net/servlets/introductiontojavaservlet.shtml
http://www.roseindia.net/servlets/what-is-servlets.shtml
http://www.roseindia.net/servlets/what-is-servlets.shtml
http://www.roseindia.net/servlets/what-is-servlets.shtml
http://www.roseindia.net/servlets/MethodsOfServlets.shtml

J2EE
By Dr.S.K.Rath, BPUT

Once the servlet starts getting the requests, the service() method is called by the servlet container to
respond. The servlet services the client's request with the help of two objects. These two objects
javax.servlet.ServletRequest and javax.servlet.ServletResponse are passed by the servlet
container.

The status code of the response always should be set for a servlet that throws or sends an error.

Parameters - The service() method takes the ServletRequest object that contains the client's
request and the object ServletResponse contains the servlet's response. The service() method
throws ServletException and 10EXxceptions exception.

getServletConfig()

public ServletConfig getServiletConfig()

This method contains parameters for initialization and startup of the servlet and returns a ServletConfig
object. This object is then passed to the init method. When this interface is implemented then it stores
the ServletConfig object in order to return it. It is done by the generic class which implements this
inetrface.

Returns - the ServletConfig object

getServletinfo()

public String getServletinfo()

The information about the servlet is returned by this method like version, author etc. This method
returns a string which should be in the form of plain text and not any kind of markup.

Returns - a string that contains the information about the servlet
3. destroy()

public void destroy()

This method is called when we need to close the servlet. That is before removing a servlet instance from
service, the servlet container calls the destroy() method. Once the servlet container calls the destroy()
method, no service methods will be then called . That is after the exit of all the threads running in the
servlet, the destroy() method is called. Hence, the servlet gets a chance to clean up all the resources like
memory, threads etc which are being held.

LIFE CYCLE OF SERVLET

The life cycle of a servlet can be categorized into four parts:

1. Loading and Inatantiation: The servlet container loads the servlet during startup or when the
first request is made. The loading of the servlet depends on the attribute <load-on-startup> of
web.xml file. If the attribute <load-on-startup> has a positive value then the servlet is load with
loading of the container otherwise it load when the first request comes for service. After loading of
the servlet, the container creates the instances of the servlet.

2. Initialization: After creating the instances, the servlet container calls the init() method and passes
the servlet initialization parameters to the init() method. The init() must be called by the servlet
container before the servlet can service any request. The initialization parameters persist untill the
servlet is destroyed. The init() method is called only once throughout the life cycle of the servlet.

http://www.roseindia.net/servlets/LifeCycleOfServlet.shtml

J2EE

By Dr.S.K.Rath, BPUT
The servlet will be available for service if it is loaded successfully otherwise the servlet container
unloads the servlet.
Servicing the Request: After successfully completing the initialization process, the servlet will be
available for service. Servlet creates seperate threads for each request. The sevlet container calls
the service() method for servicing any request. The service() method determines the kind of
request and calls the appropriate method (doGet() or doPost()) for handling the request and sends
response to the client using the methods of the response object.
Destroying the Servlet: If the servlet is no longer needed for servicing any request, the servlet
container calls the destroy() method . Like the init() method this method is also called only once
throughout the life cycle of the servlet. Calling the destroy() method indicates to the servlet
container not to sent the any request for service and the servlet releases all the resources
associated with it. Java Virtual Machine claims for the memory associated with the resources for
garbage collection.

e g Available fo Servici
Create — Initialize — A¥ 2o IOr O uests
r . . L. - Y o
(Unavailable
excepton
Unavailable for thrown)
SEerviCe
(Initialization
Failed)
Destroy
l
Unload
—

Life Cycle of a Servlet

Advantages of Java Servlets

Portability
Powerful
Efficiency
Safety
Integration
Extensibilty
Inexpensive

Nogak~kwppRE

Each of the points are defined below:

1. Portability

As we know that the servlets are written in java and follow well known standardized APIs so they are
highly portable across operating systems and server implementations. We can develop a servlet on
Windows machine running the tomcat server or any other server and later we can deploy that servlet

J2EE

By Dr.S.K.Rath, BPUT
effortlessly on any other operating system like Unix server running on the iPlanet/Netscape Application
server. So servlets are write once, run anywhere (WORA) program.

2. Powerful

We can do several things with the servlets which were difficult or even impossible to do with CGl, for
example the servlets can talk directly to the web server while the CGI programs can't do. Servlets can
share data among each other, they even make the database connection pools easy to implement. They
can maintain the session by using the session tracking mechanism which helps them to maintain
information from request to request. It can do many other things which are difficult to implement in the
CGI programs.

3.Efficiency

As compared to CGI the servlets invocation is highly efficient. When the servlet get loaded in the server,
it remains in the server's memory as a single object instance. However with servlets there are N threads
but only a single copy of the servlet class. Multiple concurrent requests are handled by separate threads
S0 we can say that the servlets are highly scalable.

4.Safety

As servlets are written in java, servlets inherit the strong type safety of java language. Java's automatic
garbage collection and a lack of pointers means that servlets are generally safe from memory
management problems. In servlets we can easily handle the errors due to Java's exception handling
mechanism. If any exception occurs then it will throw an exception.

5.Integration
Servlets are tightly integrated with the server. Servlet can use the server to translate the file paths,
perform logging, check authorization, and MIME type mapping etc.

6.Extensibility
The servlet API is designed in such a way that it can be easily extensible. As it stands today, the servlet
API support Http Servlets, but in later date it can be extended for another type of servlets.

7.Inexpensive

There are number of free web servers available for personal use or for commercial purpose. Web
servers are relatively expensive. So by using the free available web servers you can add servlet support
to it.

Basic Servlet Structure

As seen earlier, Java servlets are server side programs or to be more specific; web applications that run on
servers that comply HTTP protocol. The javax.servlet and javax.servlet.http packages provide the

necessary interfaces and classes to work with servlets. Servlets generally extend the HttpServlet class and
override the doGet or the doPost methods. In addition, other methods such as init, service and destroy also
called as life cycle methods might be used which will be discussed in the following section. The skeleton of
a servlet is given in Figure

J2EE
By Dr.S.K.Rath, BPUT

import java.ioc.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class <<servlet name>> extends Httplervlet |

public wvoild doGet (HttpServlet request, HttpResponse
response) throws ServletException, ICException |

/f code for business logic here
/4 usze request object to read client’s requests
/4 uzer responze object to throw output back to the client

v S close doGet
v // end program

Figure-Basic Serwvlet Structure

A Servlet Program

J2EE
By Dr.S.K.Rath, BPUT

/4 Bervlet program demonstrating itz life cycle
import java.lo.*;

import javax.servlet.®;

import javax.servlet.http.*;

public class servlet lifecycle extends HttpServlet |

int 1i;
puklic vold init({) throws ServletException
{
i=0; // initializing i walue
'

Jf incrementing i value in doGet method
public woid doGet (HttpServletRequest request,
HttpfervletResponse response)
throws IOException, ServletException
{
response. setContentType ("text/ html™) ;
PrintWriter cut = response.getiiriter();
if (i==0)
{
cut. println{"<html>");
out.printlni"<head>");
cut.println("<titlerZervliet™s Life Cycle</title>");
out.println("</head>") ;
out.println{"<kbody>");
out.print ("<hl>i valus initialized in init
method</hl>"+ "<hl>" + i+ "</hl>");
out.println{"</body>");
out.println("</html>");

J2EE

1 =1+1;
if (1 ==10)
{

By Dr.S.K.Rath, BPUT

cut. println("<html>");

out.
out.
out.
.println{"<body>");

.print {"<hl>1i wvalus reachss 10, hence calling

out
out

println{"<head>");
printlni{"<title>Z3ervliet’™s Life Cycle</title>");
println("</head>");

destroy method to reset it</hl>"+ "<hl>" + i+ "</ hl>");

out.
out.

println("</body>");
println("</html>");

destrov(); // call destroy method 1f 1=10

H

if (1
{

out.
.println{"<head>");

.printlni{"<titlerServlet’™s Life Cycle</title>");
out.
out.
.print {"<hl>i wvalue incremented in doGet</hl>"+

out
out

out
"<hls" o+ 14

out.
out.

H

< 10) // display incremented value of 1
printlni"<html>");

println("</head>");

println{"<body>");

"{.-"llhj_}"j :

println("</body>");
println("</html>");

puklic wvoid destrov() // reset 1 wvalue here

{
1=0;
'
'

Output Screens

To appreciate the execution of the servlet life cycle methods, keep refreshing the browser (F5 in
Windows). In the background, what actually happens is — with each refresh, the doGet method is called
which increments i’s value and displays the current value. Find below the screen shots (Figures 5
through 7) captured at random intervals. The procedure to run the servlets using a Web Server will be
demonstrated in the next section (1.3.).

J2EE
By Dr.S.K.Rath, BPUT

D Serviet's Lide Cycle - Microsoft [nternet Explorer

Bie Gt Yew Fpotes [k Hep &

=

Qe - QO [x @0 PO frrooes @ 3-5 B-)3
Lok e |) i alho e mopleg i vt iy v £}

i value initialized in init method

0

i value incremented in doGet

|

Dore Rl et

Figure— initial i wvalue and incremented walue

D Serviet's Lide € yele - Microsoft (nternet Explorer

Bis £k feew Fygoortes [eoh Hep iy
2 L] 4 W

0”‘“ > B C iR e g Gerenntes &) 3-05 B - B

A] g e dereem catrgles et Wecyrln ¥ kd® >

i value incremented in doGet

th

Dicrey Locs! ntranet

Figure- i wvalue after repeated refreshing of browser

J2EE
By Dr.S.K.Rath, BPUT

D Serviet’'s Life Cycle - Microsoft intermet Explorer

Bs Edt Yew Fpodm [ook Hep 'H
M " 5 [! & Camt
Qua ») - (x] B € e Pasortes &4 iy B8 vy

£ Mg el (Bertem stple o et o rin w ﬂuﬁ-} »

i value reaches 10, hence calling destroy method to
reset it

10
i value incremented in doGet

0

Do Loeal Pyt

Figqure-i wvalue gets reset when its wvalue equals 10

Installation, Configuration and running Servlets

In this section, we will see as how to install a WebServer, configure it and finally run servlets using this
server. Throughout this tutorial, we will be using Apache’s Tomcat server as the WebServer. Tomcat is
not only an open and free server, but also the most preferred WebServer across the world. A few reasons
we can attribute for its popularity is — Easy to install and configure, very less memory footprint, fast,
powerful and portable. It is the ideal server for learning purpose.

1. Installation of Tomcat Server and JDK

As mentioned earlier, Apache’s Tomcat Server is free software available for download @
www.apache.org. The current version of Tomcat Server is 6.0 (as of November 2007). This Server
supports Java Servlets 2.5 and Java Server Pages (JSPs) 2.1 specifications. In case of doubt or
confusion, you can refer to the abundant documentation repository available on this site.

Important software required for running this server is Sun’s JDK (Java Development Kit) and JRE
(Java Runtime Environment). The current version of JDK is 6.0. Like Tomcat, JDK is also free
and is available for download at www.java.sun.com.

2. Configuring Tomcat Server

0 Set JAVA_HOME variable - You have to set this variable which points to the base
installation directory of JDK installation. (e.g. c:\program file\java\jdk1.6.0). You can
either set this from the command prompt or from My Computer -> Properties ->
Advanced -> Environment Variables.

o0 Specify the Server Port — You can change the server port from 8080 to 80 (if you wish to)
by editing the server.xml file in the conf folder. The path would be something like this —
c:\program files\apache software foundation\tomcat6\confiserver.xml

3. Run Tomcat Server

Once the above pre-requisites are taken care, you can test as whether the server is successfully
installed as follows:

http://www.apache.org/
http://www.roseindia.net/servlets/introductiontoconfigrationservlet.shtml
http://www.java.sun.com/
http://www.roseindia.net/servlets/introductiontoconfigrationservlet.shtml
http://www.roseindia.net/servlets/introductiontoconfigrationservlet.shtml

J2EE

By Dr.S.K.Rath, BPUT
Step 1

* Go to C:\Program Files\Apache Software Foundation\Tomcat 6.0\bin and double click on
tomcat6

OR

* Go to Start->Programs->Apache Tomcat 6.0 -> Monitor Tomcat. You will notice an icon appear
on the right side of your Status Bar. Right click on this icon and click on Start service.

Step 2

* Open your Browser (e.g. MS Internet Explorer) and type the following URL :
http://localhost/ (If you have changed to port # to 80)

OR

* Open your Browser (e.g. MS Internet Explorer) and type the following URL :
http://localhost:8080/ (If you have NOT changed the default port #)

In either case, you should get a page similar to the one in Figure-8 which signifies that the Tomcat
Server is successfully running on your machine.
Compile and Execute your Servlet

This section through a step by step (and illustration) approach explains as how to compile and then
run a servlet using Tomcat Server. Though this explanation is specific to Tomcat, the procedure
explained holds true for other Web servers too (e.g. JRun, Caucho’s Resin).

Step 1 — Compile your servlet program

The first step is to compile your servlet program. The procedure is no different from that of
writing and compiling a java program. But, the point to be noted is that neither the javax.servlet.*
nor the javax.servlet.http.* is part of the standard JDK. It has to be exclusively added in the
CLASSPATH. The set of classes required for writing servlets is available in a jar file called
servlet-api.jar. This jar file can be downloaded from several sources. However, the easiest one is
to use this jar file available with the Tomcat server (C:\Program Files\Apache Software
Foundation\Tomcat 6.0\lib\servlet-api.jar). You need to include this path in CLASSPATH. Once
you have done this, you will be able to successfully compile your servlet program. Ensure that the
class file is created successfully.

Step 2 — Create your Web application folder

The next step is to create your web application folder. The name of the folder can be any valid and
logical name that represents your application (e.g. bank_apps, airline_tickets_booking,
shopping_cart,etc). But the most important criterion is that this folder should be created under
webapps folder. The path would be similar or close to this - C:\Program Files\Apache Software
Foundation\Tomcat 6.0\webapps. For demo purpose, let us create a folder called demo-examples
under the webapps folder.

10

J2EE

By Dr.S.K.Rath, BPUT

B [E Bed Ppoto [o
Quo -+ O F e v TD-
Sonbew 30 IPvigpats sl dgadte Sofhaie Fooradall s foret o B Dlaalipgs L ﬂfi

e aeal Palfier Tanks '.-J —

q & et TP ol
Ll Moo e b

|'"| L e i]) ___J P

R FpEs e it i tte
oy

- e ' @ s angied
-_] £ wupl T Mok Memy

x e PR PN

Figure- depicts the same.
Step 3 — Create the WEB-INF folder
The third step is to create the WEB-INF folder. This folder should be created under your web

application folder that you created in the previous step. Figure-10 shows the WEB-INF folder
being placed under the demo-examples folder.

W e rLie T'F':E\"'_!
B B Yew Fpots [k Hab »
@M - o seah (5 raders | [}
im0 Py Plaahfpacte Snftesre Foredston|Toresh & Cymshaggal dermo-a smpiss w BY G

File and Fabder Tasks 2 ...-J wIRIN
2 ek i Nl
D Publen stk fo e

Lo

R o fktiee

Figure — WEB-INF folder inside web application folder
Step 4 — Create the web.xml file and the classes folder
The fourth step is to create the web.xml file and the classes folder. Ensure that the web.xml and

classes folder are created under the WEB-INF folder. Figure-11 shows this file and folder being
placed under the WEB-INF folder.

B Gl Pew Fpues [k b .4
GM'Q'?/-Mh Foders [[T0s
Tl i Crifvadeery Pl dilpaeme Saftvoare Faosslweel| Fore ob B) pmbungper] by e o ddgie o sl T ERF b ﬂﬂé

Fibe and Folder Taks & __.J cApney @ m

W P i T
ol M thes by

1) Coor tha i
-ﬂ- Poibrh [Sl Prs The Whas
23 ol tes Tl
W Dedete thes Bie

Figure — web.xml file and the classes folder
Note — Instead of creating the web.xml file an easy way would be to copy an existing web.xml file

(e.g. C:\Program Files\Apache Software Foundation\Tomcat 6.0\webapps\examples\WEB-INF)
and paste it into this folder. You can later edit this file and add relevant information to your web

11

J2EE

By Dr.S.K.Rath, BPUT
application.

Step 5 — Copy the servlet class to the classes folder
We need to copy the servlet class file to the classes folder in order to run the servlet that we

created. All you need to do is copy the servlet class file (the file we obtained from Step 1) to this
folder. Figure-12 shows the servlet_lifecycle (refer section 1.2.3.) class being placed in the classes

folder.

cladies - F
B Ll pew Ppode [k Hep o
Gwd - O F Dseeh (v [T

L CiiFeasran Madinests Seftvmrs Prrdsee fore ob & vkl darre arpies AT E- 00 | rlansan A, ﬂ =
pe it e cdam
Fabe: and Fliden Tandis 2 j] s
L ke s rew Tkl]

5] '-.f{-'-l:-*-:-'m:— bt

) v thes fikes

Figure — servlet class file placed under classes folder

Step 6 — Edit web.xml to include servlet’s name and url pattern

This step involves two actions viz. including the servlet’s name and then mentioning the url
pattern. Let us first see as how to include the servlet’s name in the web.xml file. Open the
web.xml file and include the servlet’s name as shown in Figure-13.

O Gl Yew Fypeorts [ooh e I
R ¥) = ik ; —.
X (B o et Prreeen) - o (54 S
ﬂ_'! CriProgy a Flayipacme Sofbass Pourdseon| Toere sk & Tseshagpe dam e arpie s (WER- [P | et wr - a rs] T et
TR T IR e

& LRIVl AP »
« Cyprelel-mapoing >
1-mapprge
t=mapongs

e T L ey T o e
glagasaidrvlel |Beeyclaos

el Cliis>

crardlat-roenas sarviot _Elocydo o frorviet-names
Sil-pattan fearviet_lifecycha</Aud-pattams

g sadvial - magends

cfsn-conifgs

caaturt y-CoBstialnts

clagen-configs

+ CEEUAp-rgles

creounty-rphes

== 1 H -n

L= -

= CEPW AN

L army @ ey i s rod el s et B < fviy - enl iy shdmas

cermy-ariry - lyges jovdkeng drdeger cny-enlry - Lypo s

cerw-arirr-vakies 1ofeny -entry-valies b

My Conguted

Figure— Include servlet’s name using the <servlet> </servlet> tag

Note — The servlet-name need not be the same as that of the class name. You can give a different
name (or alias) to the actual servlet. This is one of the main reasons as why this tag is used for.

Next, include the url pattern using the <servlet-mapping> </servlet-mapping> tag. The url pattern

defines as how a user can access the servlet from the browser. Figure-14 shows the url pattern
entry for our current servlet.

12

J2EE
By Dr.S.K.Rath, BPUT

. R A o e
S O - 5] B 2 P Sireeem @ - 4503 L, B

ab e @) CiPracran Plagipacse Toftvees Fordsnon Tone b L Tosshagped e o camgie £ (W [0 s, w0 - ﬂfﬂ Lig ™
& TR A e ————
o € EBIvlR =i ATy e
» L3arvisl-mapoings
¢+ caarviet-mapping>
<rarvist-mapoings
- Learekats
Lierviat-namas sarval_Elacyde </ ferval-nanas
< parylat schyssrsarvial_|Macyche /s dat -Claiss

ggsn-configs
caapunty-cansiralnts

& clhagen=c m.‘.g'-_-

EHOLALy ol

< satunty -fglhes

== =3

-

= B = 1

o Arry @ Iy s s el i sea gt B s < fiviy - il fy o i s

cerv-ertry - Lypes Jow e deng dnbegeerciony-enley - Lnpes

cerw-ariry-valie s 1ofeny -entry-valies b

Wy Codrgn
Figure — Include url-pattern using the <servlet-mapping> </servlet-mapping> tag

Note — Please remember that the path given in the url-pattern is a relative path. This means that
this path is w.r.t. your web applications folder (demo-examples in this case).

Step 7 — Run Tomcat server and then execute your Servlet

This step again involves two actions viz. running the Web Server and then executing the servlet.
To run the server, follow the steps explained in Section 1.3.3.

After ensuring that the web server is running successfully, you can run your servlet. To do this,
open your web browser and enter the url as specified in the web.xml file. The complete url that
needs to be entered in the browser is:

http://localhost/demo-examples/servlet_lifecycle

2 Serviet's Life Cycle - Microsaft [ndermet Explorer

e G Qe Fpotem [k Hep ¥
ﬁm = ©) - (= &) & PRt S ramerer {E9) N-4p B~ 3
bt] b st ey arpbeg e Weorie o B¥G Lpiz ™

i value initialized in init method
L]
i value incremented in doGet

1

D Lol Witaared
Figure — Our servlet’s output!

13

J2EE

By Dr.S.K.Rath, BPUT
Eureka! Here’s the output of our first servlet. After a long and pain staking effort, we finally got
an output! As mentioned in Section 1.2.3. you can keep refreshing the browser window and see for
yourself as how i value is incremented (a proof that the doGet is called every time you re-invoke a
servlet).

Displaying Date in Servlet

In this example we are going to show how we can display a current date and time on our browser. It is
very easy to display it on our browser by using the Date class of the java.util package.

As we know that the our servlet extends the HttpServlet and overrides the doGet() method which it
inherits from the HttpServlet class. The server invokes doGet() method whenever web server recieves
the GET request from the servlet. The doGet() method takes two arguments first is HttpServletRequest
object and the second one is HttpServletResponse object and this method throws the ServletException.

Whenever the user sends the request to the server then server generates two obects, first is
HttpServletRequest object and the second one is HttpServiletResponse object. HttpServletRequest object
represents the client's request and the HttpServletResponse represents the servlet's response.

Inside the doGet(() method our servlet has first used the setContentType() method of the response object
which sets the content type of the response to text/html. It is the standard MIME content type for the
Html pages. The MIME type tells the browser what kind of data the browser is about to receive. After
that it has used the method getWriter() of the response object to retrieve a PrintWriter object. To
display the output on the browser we use the printIn() method of the PrintWriter class.

The code the program is given below:

import java.io.*;

import java.util._*;

import javax.servlet.*;
import javax.servlet.http.™;

public class DisplayingDate extends HttpServlet{
public void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, 10Exception{
PrintWriter pw = response.getWriter();
Date today = new Date();
pw.printIn(<html>"+"<body><h1>Today Date is</h1>"");
pw.printIn("+ today+"</body>"+ "</html>"");
}
}

XML File for this program

<?xml version="1.0" encoding=""1S0-8859-1"?>

<I-—<IDOCTYPE web-app
PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd"> -->

<web-app>
<servlet>
<servlet-name>Hel lo</servlet-name>
<servlet-class>DateDisplay</servlet-class>
</servilet>

14

http://www.roseindia.net/servlets/DisplayingDate.shtml

J2EE
By Dr.S.K.Rath, BPUT

<servlet-mapping>

<servlet-name>Hel lo</servilet-name>
<url-pattern>/DateDisplay</url-pattern>
</servlet-mapping>

</web-app>

The output of the program is given below:

fi) Mozilla Firefox

File Edit iew Go Bookmarks Tools Help

<ZI - [_:;> - @ I:l E__}n I http: fflocalhost: S0560/5 D ateDisplay

| | Customize Links | | Free Hotmail | | Windows

Today Date is

Wed Jul 04 04:12:20 GMTH05:30 2007

A Holistic counter in Servlet

In this program we are going to make a such a servlet which will count the number it has been accessed
and the number of threads created by the server.

In this example firstly we are going to create one class named as HolisticCounterInServlet. Now declare
a variable counter of int with initial value 0, the value of this counter will be different for each servlet
and create a Hashtable object. This object will be shared by all the threads in the container. Inside the
doGet() method use the method getWriter() method of the response object which will return the
PrintWriter object.

The code of the program is given below:

import java.io.*;

import java.io.lOException;
import java.util._*;

import javax.servlet.*;
import javax.servlet._http.™;

public class HolisticCounter extends HttpServilet{
int counter = 0; //separate For Each Servlet
static Hashtable hashTable = new Hashtable(); //Shared by all the threads

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, 10Exception {

response.setContentType(""text/html™);
PrintWriter pw = response.getWriter();
counter++;
pw.printIn(""This servlet has been accessed" + counter + 'times
");
hashTable.put(this,this);
pw.printIn(""There are currently" + hashTable.size() + "threads
");

15

J2EE
By Dr.S.K.Rath, BPUT

}
}

The output of the program is given below:

fi) Mozilla Firefox

File Edit Miew Go Bookmarks Tools Help

} = =
QZI - Ll«;} - @ |_| E}ﬂ I hittpe f flocalhost 80801 1 fHolistioCounter

| | Customize Links | | Free Hotmail | | Windows

Thizs servlet has been accessed ltimes
There are currently lthreads

Counter in Init() Method

In this program we are going to make a such a servlet which will count and displays the number of times
it has been accessed and by reading the init parameter to know from where the counting will begin.

In this program we are going to make use of the init method of the Servlet interface which takes one
argument of ServletConfig. Firstly declare a variable counter which will have the initial value of the
counter. The init() method accepts an object which implements ServletConfig interface. It uses the
method getInitParameter() method of the ServletConfig interface to the value of the init parameter
initial which we have defined in the deployment descriptor file. You need to parse the String value
which you will get from the getlnitParameter() method to a Integer.

The code of the program is given below:

import java.io.™;
import javax.servlet.*;
import javax.servlet._http.*;

public class Counterinlnit extends HttpServlet {
int counter;
public void init(ServletConfig config) throws ServletException{
super.init(config);
String initValue = config.getlnitParameter("initial™);

try{
counter = Integer.parselnt(initvalue);

catch(NumberFormatException e){
counter = O;
}

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, 10Exception {response.setContentType("text/html');

PrintWriter pw = response.getWriter();

counter++;

pw.printIn("Since loading this servlet has been accessed" + counter + "times');

}

16

J2EE

By Dr.S.K.Rath, BPUT
web.xml file for this program:

<?xml version="1.0" encoding=""15S0-8859-1""7>

<I-—<IDOCTYPE web-app
PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd"> -->

<web-app>
<servlet>
<servlet-name>Hel lo</servlet-name>
<servlet-class>Counterinlnit</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Hel lo</servlet-name>
<url-pattern>/Counterinlnit</url-pattern>
</servlet-mapping>
</web-app>

The output of the program is given below:

fi) Mozilla Firefox

File Edit Wiew Go Bookmarks Tools Help

f = =
<,11:| - Ll;> - @ | X {'_7.\[I http:flocalhost: 5050 ounterinInitfCounterInInit

| | Customize Links | | Free Hotmail | | Windows

sihee loading this servlet has been accessedltimes

Snooping the server

In this program we are going to tell you how can a use servlet to display information about its server.

Firstly we will create a class in which there will be doGet() method which takes two objects as
arguments, first is request object and the second one is of response.

To display the name of the server you are using use the method getServerName() of the ServletRequest
interface. To display the server port number use the method getServerPort(). You can also use other
methods of the ServletRequest interface like getProtocol() to display the protocol you are using and
many more methods depending on your needs.

The code of the program is given below:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SnoopingServerServlet extends HttpServiet{
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, 10Exception {
PrintWriter pw = response.getWriter();
pw.printIn(""The server name is " + request.getServerName() + '
");
pw.printIn(""The server port number is " + request.getServerPort()+ "'
");
pw.printIn(""The protocol is " + request.getProtocol()+ ''
");
pw.printIn(""The scheme used is " + request.getScheme());

17

J2EE

By Dr.S.K.Rath, BPUT
web.xml file for this program:

<?xml version="1.0" encoding=""15S0-8859-1""7>

<I-—<IDOCTYPE web-app

PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd"> -->

<web-app>
<servlet>
<servlet-name>Hel lo</servilet-name>
<servlet-class>SnoopingServerServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Hel lo</servilet-name>
<url-pattern>/SnoopingServerServlet</url-pattern>
</servlet-mapping>
</web-app>

The output of the program is given below:

E:} Mozilla Firefox

File Edit Wiew Go Bookmarks Tools Help

f = =
<,11:| - Ll;> - @ Eal E__}ﬂ I http:flocalhost: 8050, 1 3/SnoopingServerServlet

| | Customize Links | | Free Hotmail | | Windows

The =server name i=s localhost

The =serwver port number is S050<bhr>
The protocol iz HTTRA 1. l<brx

The =cheme used i= httnp

Snooping Headers

In this program we are going to going to make a servlet which will retrieve all the Http request header.

To make a program over this firstly we need to make one class named GettingSnoopingHeader. In
HttpRequest there are too many headers. To retrieve all the headers firstly we need to call the
getWriter() which returns PrintWriter object and helps us to display all the headers. To get a header
names call the method getHeaderNames() of the request object which will return the Enumeration of the
headers. Now to retrieve all the headers from the Enumeration use the method hasMoreElements(). This
method checks whether there are more headers or not. To display the output on your browser use the
PrintWriter object.

The code of the program is given below:

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet._http.*;

public class HeaderSnoopServilet extends HttpServlet{
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, 10Exception {
PrintWriter pw = response.getWriter();
pw.printIn(""'Request Headers are');

18

J2EE
By Dr.S.K.Rath, BPUT

Enumeration enumeration = request.getHeaderNames();
while(enumeration._hasMoreElements()){
String headerName = (String)enumeration.nextElement();
Enumeration headerValues = request.getHeaders(headerName);
if (headerValues = null){
while (headerValues.hasMoreElements()){
String values = (String) headerValues._nextElement();
pw.println(headerName + ": " + values);

web.xml file for this program:

<?xml version="1.0" encoding=""15S0-8859-1"?7>

<I-—<IDOCTYPE web-app
PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd"> -->

<web-app>
<servlet>
<servlet-name>Hel lo</servlet-name>
<servlet-class>HeaderSnoopServilet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Hel lo</servlet-name>
<url-pattern>/HeaderSnoopServilet</url-pattern>
</servlet-mapping>
</web-app>

The output of the program is given below:

‘:} Mozilla Firefox

File Edit iew Go Bookmarks Tools Help

<E| - [_D) - @ O @ I@ hittpe fflocalhost: 8080/ 12 Header SnoopSeryviet

| | Customize Links | | Free Hotmail | | Windows

Fequest Headers are

host: localhost:5080

user—-agent: Mozilla/S5.0 (Windows: U; Windows NT 5.0; en-U3; rv:l.3.0.12) Gecko/Z007050
accept: texXtf/HEml,application/wml,applications/=xhtml+xml, cext/ html;q=0.9, text/plain: g=0.
accept-language: en-us,en;g=0.5

accept—-encoding: gesip,deflate

accept—charset: IZ0-8859-1,ucf-S;g=0.7,%:qg=0.7

keep—alive: 300

connection: keep-alive

Dice Roller

19

J2EE
By Dr.S.K.Rath, BPUT
We are going to make one program on the dice roller in which the number in the dice will be selected
randomly.

To make a program over this firstly we need to make a class DiceRoller in which we will have a
doGet() method in which we will have our application logic. To make the dice working randomly use
the random() method of the class java.lang.Math. To print the number on the browser call the method
getWriter() of the response object which will return the PrintWriter object. Now by the object of the
PrintWriter class print the values of the dice on the browser.

The code of the program is given below:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.™;

public class DiceRollerServlet extends HttpServlet{
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, 10Exception{
PrintWriter pw = response.getWriter();
String dicel = Integer.toString((int)(Math.random()*6)+1);
String dice2 = Integer.toString((int)(Math.random()*6)+1);
pw.printIn('<html><body>");
pw.printIn('dice roller
");
pw.printIn("dicel value is " + dicel + " and
dice2 value is " +dice2);
}
}

XML File for this program:

<?xml version="1.0" encoding=""15S0-8859-1""7>

<IDOCTYPE web-app
PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd'">

<web-app>
<servlet>
<servlet-name>kailash</servlet-name>
<servlet-class>DiceRollerServilet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Kailash</servlet-name>
<url-pattern>/DiceRollerServilet</url-pattern>
</servlet-mapping>

</web-app>

The output of the program is given below:

fi) Mozilla Firefox

File Edit Miew Go Bookmarks Tools Help

} = =
QZI - Ll«> - @ |_| (‘__j.j' I hittpe fflocalhost: 8080 15) DiceR oller Servlet

| | Customize Links | | Free Hokmail | | Windows

dice roller
dicel wvalue 15 3 and
dice? value 15 2

20

J2EE
By Dr.S.K.Rath, BPUT
Getting Init Parameter Names

In this example we are going to retreive the init paramater values which we have given in the web.xml
file.

Whenever the container makes a servlet it always reads it deployment descriptor file i.e. web.xml.
Container creates name/value pairs for the ServletConfig object. Once the parameters are in
ServletConfig they will never be read again by the Container.

The main job of the ServletConfig object is to give the init parameters.

To retrieve the init parameters in the program firstly we have made one class named
GettinglnitParameterNames. The container calls the servlet's service() method then depending on the
type of request, the service method calls either the doGet() or the doPost(). By default it will be doGet()
method. Now inside the doGet() method use getWriter() method of the response object which will
return a object of the PrintWriter class which helps us to print the content on the browser.

To retrieve all the values of the init parameter use method getlnitParameterNames() which will return
the Enumeration of the init parameters.

The code of the program is given below:

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class InitServlet extends HttpServilet {
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, 10Exce

PrintWriter pw = response.getWriter();

pw.print(*"Init Parameters are : ');

Enumeration enumeration = getServletConfig()-getlnitParameterNames();
while(enumeration._hasMoreElements()){

pw.print(enumeration.nextElement() + " ');

pw.printIn("'\nThe email address is " + getServletConfig().getlnitParameter(""AdminEm
pw.printIn(""The address is " + getServletConfig()-getlnitParameter("'Address'™));
pw.printIn(""The phone no is " + getServletConfig().getlnitParameter("'PhoneNo'));

}
}

web.xml file of this program:

<?xml version="1.0" encoding=""1S0-8859-1"?>

<IDOCTYPE web-app
PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd'>

<web-app>

<servlet>

<init-param>

<param-name>AdminEmai I</param-name>
<param-value>kailash@yahoo.co. in</param-value>
</init-param>

<init-param>
<param-name>Address</param-name>
<param-value>BBSR</param-value>
</init-param>

<init-param>

21

J2EE
By Dr.S.K.Rath, BPUT

<param-name>PhoneNo</param-name>

<param-value>9853271986</param-value>

</init-param>
<servlet-name>Kailash</servlet-name>
<servlet-class>InitServlet</servlet-class>

</servilet>

<servlet-mapping>

<servlet-name>Kailash</servlet-name>

<url-pattern>/InitServlet</url-pattern>

</servlet-mapping>

</web-app>

The output of the program is given below:

TRY YOURSELF AND GET THE O/P

Passing Parameter Using Html Form

This is a very simple example in which we are going to display the name on the browser which we have
entered from the Html page.

To get the desired result firstly we have to make one html form which will have only one field named as
name in which we will enter the name. And we will also have one submit button, on pressing the submit
button the request will go to the server and the result will be displayed to us.

In the servlet which will work as a controller here picks the value from the html page by using the
method getParameter(). The output will be displayed to you by the object of the PrintWriter class.

The code of the program is given below:

<html>

<head>
<title>New Page 1</title>
</head>

<body>

<h2>Login</h2>

<p>Please enter your username and password</p>

<form method=""GET" action="/htmlform/LoginServiet">
<p> Username <input type=""text' name="‘username' size="20"></p>
<p> Password <input type=""text' name="password' size="20""></p>
<p><input type="'submit" value="'Submit" name="Bl'></p>

</form>

<p> </p>

</body>

</html>

LoginServlet.java

import java.io.™;
import javax.servlet.*;
import javax.servlet._http.*;

public class LoginServlet extends HttpServlet{
public void doGet(HttpServletRequest request, HttpServletResponse response)

22

http://www.roseindia.net/servlets/PrintingNameUsingHtmlForm.shtml

J2EE
By Dr.S.K.Rath, BPUT

throws ServletException, 10Exception {
response.setContentType(""text/html™);
PrintWriter out = response.getWriter();
String name = request.getParameter('username);
String pass = request.getParameter(“'password™);
out_printIn('<html>");
out_printin('<body>");

out.printIn(""Thanks Mr."™ + " " + pname + " ' + "for visiting roseindia
");
out.printIn("Now you can see your password : " + ' " + pass + '
");
out.printIn(*'</body></html>");
3
3

web.xml file for this program:

<?xml version="1.0" encoding=""15S0-8859-1""7>

<I-—<IDOCTYPE web-app

PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd"> -->

<web-app>
<servlet>
<servlet-name>Hel lo</servlet-name>
<servlet-class>LoginServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Hel lo</servlet-name>
<url-pattern>/LoginServlet</url-pattern>
</servlet-mapping>
</web-app>

The output of the program is given below:

E:} Mew Page 1 - Mozilla Firefox

File Edit Wiew Go Bookmarks Tools Help

<}:I - |::> - %] |:| @ I http: fflacalhost: 5080/ htrmlForm/ pages lagin. hkml

| | Customize Links | | Free Hotmail | | Windows

Login

Pleaze enter vour username and password

Tzemame |zu|fiqar

Password |aligarh

23

J2EE
By Dr.S.K.Rath, BPUT

":} Mozilla Firefox

File Edit iew Go Bookmarks Tools Help

R .
Q:I - Ll«> - @ O @ I hitkp) flocalbost: S050/Hkmlform/LoginServletrusername=zulfigar&password=aligarh&E 1 =Subrmit

| | Customize Links | | Free Hotmail | | Windows

Thanks Ir. milfinar for wsiting rozeindia

HNow you can see your password : aligarh

Time Updater in Servlet

In this program we are going to make one program on servlet which will keep on updating the time in
every second and the result will be displayed to you.

To make this servlet firstly we need to make a class named TimeUpdater. The name of the class should
be such that it becomes easy to understand what the program is going to do. Call the method
getWriter() method of the response object which will return a PrintWriter object. Use the method
getHeader() of the response object to add a new header. We can also use setHeader() in place of
getHeader(). The setHeader() method overrides the previous set header. Now by using the PrintWriter
object display the result on the browser.

The code of the program is given below:

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class TimeUpdater extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
PrintWriter pw = response.getWriter();

response.addHeader("Refresh”, "1");
pw.printin(new Date().toString());

by
¥

The output of the program is given below:

#= (] .ﬁb |http:,I',I'In:u:alhn:nst:BEIEHEI,I'SErvletPraject,l'TimeUpdater

Tue Feb 20 11:17:50 GITH05:30 2007

Send Redirect in Servlet

When we want that someone else should handle the response of our servlet, then there we should use
sendRedirect() method.

In send Redirect whenever the client makes any request it goes to the container, there the container
decides whether the concerned servlet can handle the request or not. If not then the servlet decides

24

J2EE

By Dr.S.K.Rath, BPUT
that the request can be handle by other servlet or jsp. Then the servlet calls the sendRedirect() method
of the response object and sends back the response to the browser along with the status code. Then the
browser sees the status code and look for that servlet which can now handle the request. Again the
browser makes a new request, but with the name of that servlet which can now handle the request and
the result will be displayed to you by the browser. In all this process the client is unaware of the
processing.

In this example we are going to make one html in which we will submit the user name and his password.
The controller will check if the password entered by the user is correct or not. If the password entered by
the user is correct then the servlet will redirect the request to the other servlet which will handle the
request. If the password entered by the user is wrong then the request will be forwarded to the html
form.

The code of the example is given below:
html file for this program:

<html>

<head>
<title>New Page 1</title>
</head>

<body>

<form method="POST" action="/SendRedirect/SendRedirectServiet'>
<p>Enter your name
<input type="text" name='username' size='"20"></p>
<p>Enter your password <input type=""text' name="password' size="20""></p>
<p>

<input type="'submit" value="'Submit" name="Bl''></p>
</form>

</body>

</html>

import java.io.™;
import javax.servlet.*;
import javax.servlet._http.*;

public class SendRedirectServlet extends HttpServiet{
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, 10Exception {
response.setContentType(""text/html™);
PrintWriter pw = response.getWriter();
String name = request.getParameter(‘'username);
String password = request.getParameter(*'password™);
if(name.equals('James')&& password.equals(abc™)){
response.sendRedirect("'/SendRedirect/ValidUserServiet'™);

else{
pw.printIn("u r not a valid user™);

25

J2EE
By Dr.S.K.Rath, BPUT

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.™;

public class ValidUserServlet extends HttpServlet{
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, 10Exception {
PrintWriter pw = response.getWriter();
pw.printIn("Welcome to roseindia.net " + " ');
pw.printIn(""how are you');

}
}
web.xml file for this program:

<?xml version="1.0" encoding=""15S0-8859-1""7>

<IDOCTYPE web-app
PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_ 3.dtd'>

<web-app>

<servlet>

<servlet-name>Kai lash</servlet-name>
<servlet-class>SendRedirectServlet</servlet-class>
</servlet>

<servlet-mapping>

<servlet-name>Kai lash</servlet-name>
<url-pattern>/SendRedirectServilet</url-pattern>
</servlet-mapping>

<servlet>

<servlet-name>Hel lo</servlet-name>
<servlet-class>ValidUserServlet</servlet-class>
</servlet>

<servlet-mapping>

<servlet-name>Hel lo</servlet-name>
<url-pattern>/ValidUserServlet</url-pattern>
</servlet-mapping>

</web-app>

The output of the program is given below:

26

J2EE
By Dr.S.K.Rath, BPUT

EDNew Page 1 - Mozilla Firefox

File Edit iew Go Bookmarks Tools Help

QEI - Eb - @ @ @ I@ hitkp:fflocalhost: 8050/SendRedirectfpages Login, hkml

| | Customize Links | | Free Hotmail | | Windows

Enter wour name |zulfiqar

Enter your password |aligarh

Submit:

ED Mozilla Firefox

File Edit Miew Go Bookmarks Tools Help

<E| - ED'\,' - @ @ @ I@ ktkp:f localhost: 8080/SendRedirect [SendR edirectServlzt

| | Customize Links | | Free Hotmail | | Windows

ur not a valid user

EDNew Page 1 - Mozilla Firefox

File Edit iew Go Bookmarks Tools Help

QZI - |:> - @ @ @ I@ htkp i flocalhost: 80580/SendR edirect/pagesLogin. hkml

| | Customize Links | | Free Hotmail | | Windows

Enter vour name |Jar‘nes

Enter your password |atu:

‘Submit!

27

J2EE

By Dr.S.K.Rath, BPUT

E:] Mozilla Firefox

File Edit Miew Go Bookmarks Tools Help

[_V> - %] |_| (4__/.\[I http:) flocalhost 8080/ SendRedirect MvalidUser Servlet

| | Customize Links | | Free Hotmail | | Windows

Welcome to rozeindia.net
how are you

Session Tracking

As we

know that the Http is a stateless protocol, means that it can't persist the information. It always

treats each request as a new request. In Http client makes a connection to the server, sends the request.,
gets the response, and closes the connection.

In session management client first make a request for any servlet or any page, the container receives the
request and generate a unique session ID and gives it back to the client along with the response. This ID
gets stores on the client machine. Thereafter when the client request again sends a request to the server

then it

also sends the session Id with the request. There the container sees the Id and sends back the

request.

Session Tracking can be done in three ways:

Hidden Form Fields: This is one of the way to support the session tracking. As we know by the
name, that in this fields are added to an HTML form which are not displayed in the client's
request. The hidden form field are sent back to the server when the form is submitted. In hidden
form fields the html entry will be like this : <input type ="hidden" name = "name" value="">. This
means that when you submit the form, the specified name and value will be get included in get or
post method. In this session ID information would be embedded within the form as a hidden field
and submitted with the Http POST command.

URL Rewriting: This is another way to support the session tracking. URLRewriting can be used
in place where we don't want to use cookies. It is used to maintain the session. Whenever the
browser sends a request then it is always interpreted as a new request because http protocol is a
stateless protocol as it is not persistent. Whenever we want that out request object to stay alive till
we decide to end the request object then, there we use the concept of session tracking. In session
tracking firstly a session object is created when the first request goes to the server. Then server
creates a token which will be used to maintain the session. The token is transmitted to the client by
the response object and gets stored on the client machine. By default the server creates a cookie
and the cookie get stored on the client machine.

Cookies: When cookie based session management is used, a token is generated which contains
user's information, is sent to the browser by the server. The cookie is sent back to the server when
the user sends a new request. By this cookie, the server is able to identify the user. In this way the
session is maintained. Cookie is nothing but a name- value pair, which is stored on the client
machine. By default the cookie is implemented in most of the browsers. If we want then we can
also disable the cookie. For security reasons, cookie based session management uses two types of
cookies.

To Determine whether the Session is New or Old

In this program we are going to make one servlet on session in which we will check whether the session
is new or old.

To make this program firstly we need to make one class named CheckingTheSession. Inside the
doGet() method, which takes two objects one of request and second of response. Inside this method call

28

http://www.roseindia.net/servlets/session-tracking.shtml
http://www.roseindia.net/servlets/session-tracking.shtml

J2EE
By Dr.S.K.Rath, BPUT
the method getWriter() of the response object. Use getSession() of the request object, which returns the
HttpSession object. Now by using the HttpSession we can find out whether the session is new or old.

The code of the program is given below:

import java.io.™;
import javax.servlet.*;
import javax.servlet._http.*;

public class CheckingTheSession extends HttpServilet{
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, 10Exception {
response.setContentType(""text/html™);
PrintWriter pw = response.getWriter();
pw.printIn(""Checking whether the session is new or old
");
HttpSession session = request.getSession();
if(session.isNew()){
pw.printIn(""You have created a new session');

else{
pw.printIn("Session already exists');

}
}

web.xml file for this program:

<?xml version="1.0" encoding=""15S0-8859-1""?7>

<I-—<IDOCTYPE web-app
PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd"> -->

<web-app>
<servlet>
<servlet-name>Hel lo</servilet-name>
<servlet-class>CheckingTheSession</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Hel lo</servlet-name>
<url-pattern>/CheckingTheSession</url-pattern>
</servlet-mapping>
</web-app>

The output of the program is given below:

E—_) Mozilla Firefox

File Edit Miew Go Bookmarks Tools Help

. —
QZI - Ll«> - @ |_| @ I ikt flocalhost 18080} SessionTracking/Checking TheSession

| | Customize Links | | Free Hotmail | | wWindows

Checking whether the session 15 new or old
Tou have created a new session

29

J2EE

By Dr.S.K.Rath, BPUT
Session Last Accessed Time Example

This example illustrates to find current access time of session and last access time of session. Sessions
are used to maintain state and user identity across multiple page requests. An implementation of
HttpSession represents the server's view of the session. The server considers a session to be new until it
has been joined by the client. Until the client joins the session, isNew() method returns true.

Here is the source code of LastAccessTime.java

import java.io.*;

import javax.servlet.*;

import javax.servlet._http.*;

import java.net.*;

import java.util._*;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;
import javax.servlet_http.HttpSession;

import javax.servlet_http.HttpServletRequest;
import javax.servlet._http.HttpServletResponse;

public class LastAccessTime extends HttpServilet {
public void doGet(HttpServletRequest request,HttpServletResponse response)

throws ServletException, 10Exception {
HttpSession session = request.getSession(true);
response.setContentType(""text/html™);
PrintWriter out = response.getWriter();
String head;
Integer count = new Integer(0);
if (session.isNew()) {

head = ""New Session Value ";
} else {
head = "Old Session value™;

Integer oldcount =(Integer)session.getValue(''count™™);
if (oldcount = null) {

count = new Integer(oldcount.intvalue() + 1);
}

}

session.putValue('count™, count);

out.printIn(""<HTML><BODY BGCOLOR=\"#FDF5E6\"'>\n"" +
"<H2 ALIGN=\"CENTER\">" + head + "'</H2>\n" +
""<H4 ALIGN=\"CENTER\">Session Access Time:</H4>\n" +
"<TABLE BORDER=1 ALIGN=CENTER>\n"" + "'<TR BGCOLOR=\"pink\'">\n" +
' <TD>Session Creation Time\n" +" <TD>" +
new Date(session.getCreationTime()) + "\n" +
"<TR BGCOLOR=\"pink\">\n" +" <TD>Last Session Access Time\n" +
" <TD>" + new Date(session.getLastAccessedTime()) +
"</TABLE>\n" +'"</BODY></HTML>");

public void doPost(HttpServletRequest request,HttpServletResponse response)
throws ServletException, 10Exception {
doGet(request, response);
}
}

Description of code: In the above servlet, isNew() method is used to find whether session is new or
old. The getCreationTime() method is used to find the time when session was created. The
getLastAccessedTime() method is used to find when last time session was accessed by the user.

30

http://www.roseindia.net/servlets/lastaccessedtime.shtml

J2EE
By Dr.S.K.Rath, BPUT
Here is the mapping of servlet (*'LastAccessTime.java") in the web.xml file:

<servlet>
<servlet-
name>LastAccessTime</servlet-name>
<servlet-
class>LastAccessTime</servlet-class>
</servlet>
<servlet-mapping>
<servlet-

name>LastAccessTime</servlet-name>
<url-pattern>/LastAccessTime</url-

pattern>

</servlet-mapping>

Running the servlet by this url: http://localhost:8080/CodingDiaryExample/LastAccessTime
displays the output like below:

hittp: / flocalhost: 3030/ CodingDiaryExample/LastaccessTime

| wWindows Media || Windows

New Session Value

Session Access Time:

Sezston Creation Tine Wed Jun 25 18:47:17 GRITH05:30 2008
Last Session Access Tme Wed Jun 25 184717 GRITHOS:30 2008

When user re-calls the servlet the creation time will be same but last accessed time will be changed
as shown in the following figure:

Old Session value

Session Access Time:

=ezston Creation Time Wed Jun 25 18:47:17 Gh{THI5S:30 2008
Last Session Access Tune Wed Jun 25 184846 GhiTH15:30 2008

Display session value Using Servlet

Sometime while developing web application it is necessary to interact with the different values of the
Session object. In this example we will explore the different values of the Session object and then learn
how to use it in our programming code.

You will learn how to find all the session related information like:

e getld. This method is used to find the identifier of the session which is unique.

31

http://localhost:8080/CodingDiaryExample/LastAccessTime

J2EE

By Dr.S.K.Rath, BPUT

e isNew. This method is used when find, whether session is newly created or preexisted. If session
has never seen by user then this method return "true™ but if session is preexisted then it return
"false".

e getCreationTime. This method is used to find the creation time of session. To use of this method
we can find the following details about session i.e. day, month, date, time, GMT(Greenwich
Mean Time) and year will be displayed.

e getLastAccessedTime. This method is used to find the last accessed time of session. It returns the
time, in milliseconds.

e getMaxlInactivelnterval. This method returns the total time, in seconds, during which session
remains active if user does not accesses the session for this maximum time interval. After this time
the session will be invalidated automatically. A negative value indicates that the session should
never timeout.

Here is the sample code for HttpSessionDisplay.java:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.net.*;

import java.util._*;

import javax.servlet.ServletConfig;

import javax.servlet._ServletException;

import javax.servlet.ServletOutputStream;
import javax.servlet._http.HttpSession;

import javax.servlet_http.HttpServletRequest;
import javax.servlet._http.HttpServletResponse;

public class HttpSessionDisplay extends HttpServlet {

String head;

public void doGet(HttpServletRequest request,HttpServletResponse response)
throws ServletException, 10Exception {
HttpSession session = request.getSession(true);
response.setContentType(""text/html™);
PrintWriter out = response.getWriter();
Integer count = new Integer(0);
if (session.isNew()) {

head = "New Session Value™;
} else {
head = "0ld Session value';

Integer oldcount =(Integer)session.getValue(''count™™);
if (oldcount = null) {

count = new Integer(oldcount.intvValue() + 1);
}

}

session.putValue('count™, count);
out.printIn(""'<HTML><BODY BGCOLOR=\"pink\'">\n" +
"<H2 ALIGN=\"CENTER\"'>" + head + "'</H2>\n" +
""<H3 ALIGN=\"'CENTER\"'>Description about Session:</H3>\n" +
"<TABLE BORDER=1 ALIGN=CENTER>\n"" + "<TR BGCOLOR=\"'voilet\''>\n" +
" <TH>Information Type<TH>Session Value\n" +"<TR>\n" +" <TD>ID\n" +
"<TD>" + session.getld() + "\n" +
“"<TR>\n" + " <TD>Session Creation Time\n" +
" <TD>" + new Date(session.getCreationTime()) + "\n" +
"<TR>\n" +" <TD>Last Session Access Time\n" +" <TD>" +
new Date(session.getLastAccessedTime()) + '\n" +
“"<TR>\n" +" <TD>Number of Previous Session Accesses\n" +
"<TD>" + count + "\n" +

32

J2EE

By Dr.S.K.Rath, BPUT

“"</TABLE>\n" +"</BODY></HTML>"");

public void doPost(HttpServletRequest request,HttpServletResponse response)
throws ServletException, 10Exception {

doGet(request, response);

}
}

Here is the mapping of class file in web.xml.

<servlet>
<servlet-
name>HttpSessionDisplay</servlet-name>
<servlet-

class>HttpSessionDisplay</servlet-class>
</servlet>
<servlet-mapping>
<servlet-

name>HttpSessionDisplay</servlet-name>

<url-pattern>/HttpSessionDisplay</url-
pattern>
</servlet-mapping>

Run this example by this url: http://localhost:8080/CodingDiaryExample/HttpSessionDisplay

Output:

In case of first time accessing of servlet the following session value will be displayed

New Session Value

Description about Session:

e

F9B14C30ABEVEZES VS 180FFEAZCSEBAS

Sesston Creation Tone

Wed Jun 25 17:34:03 GRTH05:30 2008

Last Session Access Tine

Wed Jun 25 17:34:03 GRT+05:30 2008

Mumber of Previous Session Accesses

0

In case of preexist session if user accessed the servlet then the following session value will be

displayed.

33

J2EE

By Dr.S.K.Rath, BPUT
Old Session value

Description about Session:

Iy A9B14C30ABETEZESTA1B0FFEAZCLABAS
session Creation Tine Wed Tun 25 172403 GRITH05:30 2008

Last Session Access Time Wed Jun 25 172403 GRITH05:30 2008
Mumber of Presnous Session Accesses |1

Hit Counter Servlet Example

This example illustrates about counting how many times the servlet is accessed. When first time servlet
(CounterServlet) runs then session is created and value of the counter will be zero and after again
accessing of servlet the counter value will be increased by one. In this program isNew() method is used
whether session is new or old and getValue() method is used to get the value of counter.

Here is the source code of CounterServlet.java:
import java.io.*;

import javax.servlet.*;

import javax.servlet._http.*;

public class CounterServlet extends HttpServlet{
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, 10Exception {

HttpSession session = request.getSession(true);
response.setContentType(""text/html'™);
PrintWriter out = response.getWriter();

Integer count = new Integer(0);

String head;

if (session.isNew()) {

head = "This is the New Session";
} else {
head = "This is the old Session";

Integer oldcount =(Integer)session.getValue(''count™);
if (oldcount = null) {

count = new Integer(oldcount.intvValue() + 1);
b
3
session.putValue('count™, count);
out.printIn(""<HTML><BODY BGCOLOR=\"#FDF5E6\""'>\n"" +
""<H2 ALIGN=\"'CENTER\'>" + head + "'</H2>\n"" + "<TABLE BORDER=1 ALIGN=CENTER>\n"
+ ""<TR BGCOLOR=\"'#FFADOO\''>\n"
+" <TH>Information Type<TH>Session Count\n"
+"<TR>\n"" +" <TD>Total Session Accesses\n" +
“"<TD>" + count + "\n" +
""</TABLE>\n"
+""</BODY></HTML>");

34

J2EE
By Dr.S.K.Rath, BPUT
Mapping of Servlet (*"CounterServlet.java") in web.xml file

<servlet>
<servlet-
name>CounterServlet</servlet-name>
<servlet-
class>CounterServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-
name>CounterServlet</servlet-name>
<url-pattern>/CounterServlet</url-
pattern>
</servlet-mapping>

Running the servlet by this url: http://localhost:8080/CodingDiaryExample/CounterServiet
displays the figure below:

htkpe i flocalhost: 3050/ CodingDiaryE xample/CounterSerwvlet

| wWindows Media || Windows

This is the New Session

Information Type Session Count
Total Sesston Access |0

When servlet is hit two times by the user the counter value will be increased by two as shown in
figure below:

htkps fflocalhost: 8060/ CodingDiaryE xample/ CounterServlet

- windows Media || Windows

This is the old Session

Information Type Session Count
Total Session Access |2

Inserting Data In Database table using Statement

In this program we are going to insert the data in the database from our java program in the table stored
in the database.

To accomplish our goal we first have to make a class named as ServletlnsertingData, which must
extends the abstract HttpServlet class, the name of the class should be such that other person can
understand what this program is going to perform. The logic of the program will be written inside the
doGet() method that takes two arguments, first is HttpServletRequest interface and the second one is the
HttpServletResponse interface and this method can throw ServletException.

Inside this method call the getWriter() method of the PrintWriter class. We can insert the data in the
database only and only if there is a connectivity between our database and the java program. To

35

http://localhost:8080/CodingDiaryExample/CounterServlet

J2EE

By Dr.S.K.Rath, BPUT
establish the connection between our database and the java program we first need to call the method
forName(), which is static in nature of the class Class. It takes one argument which tells about the
database driver we are going to use. Now use the static method getConnection() of the DriverManager
class. This method takes three arguments and returns the Connection object. SQL statements are
executed and results are returned within the context of a connection. Now your connection has been
established. Now use the method createStatement() of the Connection object which will return the
Statement object. This object is used for executing a static SQL statement and obtaining the results
produced by it. We have to insert a values into the table so we need to write a query for inserting the
values into the table. This query we will write inside the executeUpdate() method of the Statement
object. This method returns int value.

If the record will get inserted in the table then output will show "record has been inserted” otherwise
"sorry! Failure".

The code of the program is given below:

import java.io.™;

import java.sqgl.*;

import javax.servlet.*;
import javax.servlet.http.™;

public class Datalnsertion extends HttpServilet{
public void doGet(HttpServletRequest request, HttpServletResponse response)throws
ServiletException, 10Exception
response.setContentType(""text/html™);
PrintWriter out = response.getWriter();
String url = "jdbc:mysql://localhost/kailash?user=root&password=admin’;
Connection conn;
ResultSet rs;
try{
Class.forName("'org.gjt.mm.mysql .Driver'™);
conn = DriverManager.getConnection(url);
Statement statement = conn.createStatement();

String query = "insert into emp_sal values("kailash®, 15000)";
int 1 = statement.executeUpdate(query);
iT(ir=0){

out.printIn(""The record has been inserted");

else{
out.printIn(Sorry! Failure™);
}

rs = statement.executeQuery(“'select * from emp_sal');
while(rs.next()){

out_printIn('<p><table>" + rs.getString(l) + " " + rs.getInt(2) + "</p></table>
}

rs.close();
statement.close();

catch (Exception e){
System.out.printin(e);
}
}
}

XML File for this program

<?xml version="1.0" encoding=""15S0-8859-1""?>
<I-—<IDOCTYPE web-app
PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

36

J2EE
By Dr.S.K.Rath, BPUT
"http://java.sun.com/dtd/web-app_2_3.dtd"> -->

<web-app>
<servlet>
<servlet-name>Hel lo</servlet-name>
<servlet-class>Datalnsertion</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Hel lo</servlet-name>
<url-pattern>/Datalnsertion</url-pattern>
</servlet-mapping>
</web-app>

Table in the database before Insertion:

mysqgl> select * from

emp_sal;
Empty set (0.02 sec)

The output of the program is given below:

#—;}Muzilla Firefox
Eile Edit Wwiew @o Bookmarks Tools Help

B,
<J1:| T @ E‘__}ﬂ I http:) flocalhost: 3080/ Datalnsertionf/Datalnsertion

| | Customize Links | | Free Hotmail | | Windows

The record has been mserted

mlfigar 15000

Table in the database after Insertion:

mysqgl> select * from

B S — S +
| EmpName | salary |

B S S S +

kailash | 15000 |
B S — S +

1 row in set (0.02 sec)

Retrieving Data from the table using Statement

In this program we are going to fetch the data from the database in the table from our java program.

To accomplish our goal we first have to make a class named as ServletFetchingData which must
extends the abstract HttpServlet class, the name of the class should be such that the other person can
understand what this program is going to perform. The logic of the program will be written inside the
doGet() method which takes two arguments, first is HttpServletRequest interface and the second one is
the HttpServletResponse interface and this method can throw ServletException.

Inside this method call the getWriter() method of the PrintWriter class. We can retrieve the data from
the database only and only if there is a connectivity between our database and the java program. To

37

J2EE

By Dr.S.K.Rath, BPUT
establish the connection between our database and the java program we firstly need to call the method
forName() which is static in nature of the class ClassLoader. It takes one argument which tells about
the database driver we are going to use. Now use the static method getConnection() of the
DriverManager class. This method takes three arguments and returns the Connection object. SQL
statements are executed and results are returned within the context of a connection. Now your
connection has been established. Now use the method createStatement() of the Connection object
which will return the Statement object. This object is used for executing a static SQL statement and
obtaining the results produced by it. As we need to retrieve the data from the table so we need to write a
query to select all the records from the table. This query will be passed in the executeQuery() method of
Statement object, which returns the ResultSet object. Now the data will be retrieved by using the
getString() method of the ResultSet object.

The code of the program is given below:

import java.io.*;

import java.sqgl.*;

import javax.servlet.*;
import javax.servlet._http.™;

public class ServletFetchingDataFromDatabasel extends HttpServiet{

public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, 10Exception{

response.setContentType(""text/html™);
PrintWriter pw = response.getWriter();
String connectionURL = "jdbc:mysql://localhost/kailash;
Connection connection=null;
try{
Class.forName("'org.gjt.mm.mysql .Driver'™);
connection = DriverManager.getConnection(connectionURL, "root', "admin');
Statement st = connection.createStatement();
ResultSet rs = st.executeQuery('Select * from emp_sal™);
while(rs.next()){
pw.printIn("EmpName"™ + ™ " + "EmpSalary'" + "'
");
pw.printIn(rs.getString(1) + " " + rs.getString(2) + "
");
¥

}
catch (Exception e){
pw.printin(e);

}
}

XML File for this program:

<?xml version="1.0" encoding=""15S0-8859-1""?7>

<I-—<IDOCTYPE web-app
PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd"> -->

<web-app>
<servlet>
<servlet-name>Hel lo</servlet-name>
<servlet-class>ServletFetchingDataFromDatabase</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Hel lo</servlet-name>
<url-pattern>/ServletFetchingDataFromDatabase</url-pattern>
</servlet-mapping>

38

J2EE
By Dr.S.K.Rath, BPUT
</web-app>

The output of the program is given below:

f—:) Mozilla Firefox

File Edit ‘iew Go Bookmarks Tools Help

} = =
<ZI - Ll«> - @ | X E__/h I http: /flocalhost: 8080/FetchingDat afServietFetchingDataFromDat abase

| | Customize Links | | Free Hotmail | | Windows

Emplfame EmpSalaty
mlfigar 15000
Emplfame EmpSalaty
winod 12000

Table in the database:
mysql> select * from

B S S S +

EmpName salary |
B S — S +

kailash 15000 |
vinod | 12000 |
S R +
2 rows in set (0.00 sec)

Inserting data from the HTML page to the database

In this program we are going to make program in which we are going to insert the values in the database
table from the html form.

To make our program working we need to make one html form in which we will have two fields, one is
for the name and the other one is for entering the password. At last we will have the submit form,
clicking on which the values will be passed to the server.

The values which we have entered in the Html form will be retrieved by the server side program which
we are going to write. To accomplish our goal we first have to make a class named as
ServletinsertingDataUsingHtml which must extends the abstract HttpServlet class, the name of the
class should be such that the other person can understand what this program is going to perform. The
logic of the program will be written inside the doGet() method which takes two arguments, first is
HttpServletRequest interface and the second one is the HttpServletResponse interface and this method
can throw ServletException.

Inside this method call the getWriter() method of the PrintWriter class. We can insert the data in the
database only and only if there is a connectivity between our database and the java program. To
establish the connection between our database and the java program we firstly need to call the method
forName() which is static in nature of the class Class. It takes one argument which tells about the
database driver we are going to use. Now use the static method getConnection() of the
DriverManager class. This method takes three arguments and returns the Connection object. SQL
statements are executed and results are returned within the context of a connection. Now your
connection has been established. Now use the method prepareStatement() of the Connection object
which will return the PreparedStatement object and takes one a query which we want to fire as its input.

39

http://www.roseindia.net/servlets/ServletInsertingDataUsingUsingHtml.shtml

J2EE

By Dr.S.K.Rath, BPUT
The values which we have got from the html will be set in the database by using the setString() method
of the PreparedStatement object.

If the record will get inserted in the table then output will show "record has been inserted" otherwise
"sorry! Failure".

The code of the program is given below:

<html>

<head>
<title>New Page 1</title>
</head>

<body>

<form method="POST" action="/InDataByHtml/ServletlnsertingDataUsingHtml">
<I--webbot bot="'SaveResults'" U-File="fpweb:/// private/form results_txt"
S-Format="TEXT/CSV" S-Label-Fields="TRUE" -->
<p>Enter Name: <input type="text"
name="‘username' size='"20"><
<p>Enter Password: <input type='"text' name="‘password' size="20""></p>
<p>
 &nb
<input type="'submit" value="'Submit" name="Bl''></p>
</form>

</body>

</html>

ServletinsertingDataUsingHtml.java

import java.io.™;

import java.lang.*;

import java.sql.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ServletlnsertingDataUsingHtml extends HttpServiet{
public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, 10Exc
response.setContentType(""text/html™);
PrintWriter pw = response.getWriter();
String connectionURL = "jdbc:mysql://localhost/kailash";
Connection connection;
try{
String username request.getParameter(‘'username’™);
String password request.getParameter(*'password™);
pw.println(username);
pw.println(password);
Class.forName("'org-gjt.-mm._mysql .Driver™);
connection = DriverManager.getConnection(connectionURL, "root', "admin');
PreparedStatement pst = connection.prepareStatement(insert into emp_info values(
pst.setString(1,username);
pst.setString(2,password);
int 1 = pst.executeUpdate();
if(i1=0){

pw.printIn(*'
Record has been inserted™);

40

J2EE
By Dr.S.K.Rath, BPUT

else{
pw.printIn("failed to insert the data");

}
catch (Exception e){
pw.printin(e);

}
}

web.xml file for this program:

<?xml version="1.0" encoding=""1S0-8859-1"?>

<IDOCTYPE web-app
PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_ 3.dtd'>

<web-app>
<servlet>
<servlet-name>Kailash</servlet-name>
<servlet-class>ServletinsertingDataUsingHtml</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Kailash</servlet-name>
<url-pattern>/ServletlnsertingDataUsingHtml</url-pattern>
</servlet-mapping>

</web-app>

The output of the program is given below:

:.TQNEW Page 1 - Mozilla Firefox

File Edit Wiew Go Bookmarks Tools Help

<}Z| - E> - @ O @ I@ http: /flocalhost: 3080/ InDataByHEmlpages/Login. html

| | Customize Links | | Free Hotmail | | Windows

Enter MName: |zulfiqar

Enter Pasaword: |aligarh

S ubmit:

This is the output of the above input.

41

J2EE
By Dr.S.K.Rath, BPUT

E:] Mozilla Firefox

File Edit Wiew Go Bookmarks Tools Help

: —
<:| - l_l;> - %I (A g/h I http:/ flacalhast: G080/ InCataByHemlfServletInsertingDat aUsingHeml

| | Customize Links | | Free Hotmail | | Windows

mlfigar algarh

Eecord has been inserted

Retrieving Data from the table using PreparedStatement

In this program we are going to fetch the data from the database in the table from our java program
using PreparedStatement.

To accomplish our goal we first have to make a class named as ServletFetchingDataFromDatabase
which must extends the abstract HttpServlet class, the name of the class should be such that the other
person can understand what this program is going to perform. The logic of the program will be written
inside the doGet() method which takes two arguments, first is HttpServletRequest interface and the
second one is the HttpServletResponse interface and this method can throw ServletException.

Inside this method call the getWriter() method of the PrintWriter class. We can retrieve the data from
the database only and only if there is a connectivity between our database and the java program. To
establish the connection between our database and the java program we firstly need to call the method
forName() which is static in nature of the class ClassLoader. It takes one argument which tells about
the database driver we are going to use. Now use the static method getConnection() of the
DriverManager class. This method takes three arguments and returns the Connection object. SQL
statements are executed and results are returned within the context of a connection. Now your
connection has been established. Now use the method prepareStatement() of the Connection object
which will return the PreparedStatement object and takes a query as its parameter. In this query we will
write the task we want to perform. The Resultset object will be retrieved by using the executeQuery()
method of the PreparedStatement object. Now the data will be retrieved by using the getString()
method of the ResultSet object.

The code of the program is given below:

import java.io.*;

import java.sqgl.*;

import javax.servlet.*;
import javax.servlet.http.™;

public class ServletFetchingDataFromDatabase extends HttpServiet{
public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, 10Exception{
response.setContentType(""text/html™);
PrintWriter pw = response.getWriter();
String connectionURL = "jdbc:mysql://localhost/kailash;
Connection connection=null;
try{
Class.forName("'org.gjt.mm.mysql .Driver™);
connection = DriverManager.getConnection(connectionURL, "root', "admin');
PreparedStatement pst = connection.prepareStatement('Select * from emp_sal™);
ResultSet rs = pst.executeQuery();
while(rs.next()){

42

J2EE
By Dr.S.K.Rath, BPUT
pw.printIn(rs.getString(1) +" " + rs.getString(2)+'"
");

catch (Exception e){
pw.printin(e);

}
pw.printin(hello™);
}
}

The output of the program is given below:

f—:) Mozilla Firefox

File Edit ‘iew Go Bookmarks Tools Help

} = =
<ZI - Ll«> - @I | X {;’h I http: /flocalhost: 8080/FetchingDat afServietFetchingDataFromDat abase

| | Customize Links | | Free Hotmail | | Windows

Empllame EmpSalary
zulfiggar 15000
Empllame EmpSalary
winod 12000

Table in the database:
* from emp_sal;

EmpName salary |
§ R — R +

kailash 15000 |
12000 |

2 rows in set (0.00 sec)

Getting Columns Names using Servlets

Consider a situation where there is a need to know about the name of the columns without touching our
database. As we are the programmers so why we need to worry about the database. We want to do the
manipulation by sitting on our computer through our program without going into the database.

In this example we are going to exactly the same as we said above. To make this possible we need to
make a class named ServletGettingColumnsNames, the name of the program should be such that if in
future there is any need to make any change in the program, you can easily understand in which program
you have to make a change. Now inside the doGet() method use the getWriter() method of the response
object and its returns the PrintWriter object, which helps us to write on the browser. To get a column
names from the database there is a need for the connection between the database and the java program.
After the establishment of the connection with the database pass a query for retrieving all the records
from the database and this will return the PreparedStatement object. To get the column names from the
database we firstly need a reference of ResultSetMetaData object and we will get it only when if we
have the ResultSet object. To get the object of the ResultSet we will call the method executeQuery() of
the PreparedStatement interface. Now we have the object of the ResultSet. By the help of the ResultSet
we can get the object of ResultSetMetaData. We will get it by calling the method getMetaData() of the

43

http://www.roseindia.net/servlets/ServletGettingColumnsNames.shtml
http://www.roseindia.net/servlets/ServletGettingColumnsNames.shtml

J2EE

By Dr.S.K.Rath, BPUT
ResultSet interface. The names of the columns will be retrieved by the method getColumnsNames() of
the ResultSetMetaData interface. The output will be displayed to you by the PrintWriter object.

The code of the program is given below:

import javax.servlet.*;
import javax.servlet._http.*;
import java.io.*;

import java.sqgl.*;

public class ServletGettingColumnsNames extends HttpServilet{
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, I0Exception{

response.setContentType(""text/html™);
PrintWriter pw = response.getWriter();
String connectionURL = "jdbc:mysql://localhost/kailash";
Connection connection=null;
try{
Class.forName("'org-gjt.-mm._mysql .Driver™);
connection = DriverManager.getConnection(connectionURL, "root', "admin');

PreparedStatement pst = connection.prepareStatement("'select * from emp_details'™);

ResultSet rs = pst.executeQuery();
ResultSetMetaData rsmd = rs.getMetaData();
int noOfColumns = rsmd.getColumnCount();
//1t shows the number of columns
pw.printIn(""The number of columns are " + noOfColumns + *'
");
//1t shows the name of the columns
pw.printIn(""The name of the columns are:
");
for(int 1 =1; i<=noOfColumns;i++){
String names = rsmd.getColumnName(i);
pw.println(names);

catch(Exception e){
pw.printIn(""The exception is " + e);

}
}

XML File for this program:

<?xml version="1.0" encoding=""15S0-8859-1""7>

<IDOCTYPE web-app
PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd'">

<web-app>

<servlet>

<servlet-name>Kailash</servlet-name>
<servlet-class>ServletGettingColumnsNames</servlet-class>
</servlet>

<servlet-mapping>

<servlet-name>Kai lash</servlet-name>
<url-pattern>/ServletGettingColumnsNames</url-pattern>
</servlet-mapping>

</web-app>

The output of the program is given below:

44

J2EE

By Dr.S.K.Rath, BPUT

E_) Mozilla Firefox

File Edit Miew Go Bookmarks Tools Help

P,
<:| < |_l = [%] él. I htkp:f flocalhost: 50580/ Get ColumnniamesServlietGetlingColurmnstlames

| | Customize Links | | Free Hotmail | | Windows

The mumber of columns are 8
The name of the columnns are:
uzerld Mame surnatne address1 addresse town country zipcode

Table in the database:

mysql> select from emp_details;
R

1 row in set (0.00 sec)

Getting Number of Columns

Consider a situation where there is a need to know about the number of columns in the table without
touching our database. As we are the programmers so why we should worry about the database. We
want to do the manipulation by sitting on our computer through our program without going into the
database.

In this example we are going to exactly the same as we said above. To make this possible we need to
make a class named ServletGettingNoOfColumns, the name of the program should be such that if in
future there is any need to make any change in the program, you can easily understand in which program
you have to make a change. As we know that in Servlet the main logic of the program is written inside
the service method and in turn the service method calls the doGet() method. Now inside the doGet()
method use the getWriter() method of the response object and its returns the PrintWriter object, which
helps us to write on the browser. To get the number of columns from the database table there is a need
for the connection between the database and the java program. After the establishment of the
connection with the database, pass a query for retrieving all the records from the database and this will
return the PreparedStatement object. To get the number of columns from the database we firstly need a
reference of ResultSetMetaData object and we will get it only when if we have the ResultSet object with
us. To get the object of the ResultSet we will call the method executeQuery() of the PreparedStatement
interface. Now we have the object of the ResultSet. By the help of the ResultSet we can get the object of
ResultSetMetaData. We will get it by calling the method getMetaData() of the ResultSet interface. The

45

http://www.roseindia.net/servlets/ServletGettingNoOfColumns.shtml
http://www.roseindia.net/servlets/ServletGettingNoOfColumns.shtml

J2EE

By Dr.S.K.Rath, BPUT
number of columns in the databasd table will be retrieved by the method getColumnsCount() of the
ResultSetMetaData interface. This method will return the integer type of value. The number of columns
will be displayed on the browser by the PrintWriter object.

The code of the program is given below:

import java.io.™;

import java.sql.*;

import javax.servlet.*;
import javax.servlet._http.*;

public class ServletGettingNoOfColumns extends HttpServlet{
public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServiletException, 10Exception{
response.setContentType(""text/html'™);
PrintWriter pw = response.getWriter();
String connectionURL = "jdbc:mysql://localhost/kailash";
Connection connection=null;
try{
Class.forName("'com.mysql . jdbc.Driver') _newlnstance();
connection = DriverManager.getConnection(connectionURL, "root', "admin');
PreparedStatement pst = connection.prepareStatement('select * from emp_details'™);
ResultSet rs = pst.executeQuery();
ResultSetMetaData rsmd = rs.getMetaData();
int noOfColumns = rsmd.getColumnCount();
//1t shows the number of columns
pw.printIn(""The number of columns are " + noOfColumns);

}
catch(Exception e){
pw.printIn(""The exception is " + e);

}
}

web.xml file for this program:

<?xml version="1.0" encoding=""1S0-8859-1"?>

<IDOCTYPE web-app
PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_ 2 3.dtd'>

<web-app>
<servlet>
<servlet-name>Kailash</servlet-name>
<servlet-class>ServletGettingNoOfColumns</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Kailash</servlet-name>
<url-pattern>/ServletGettingNoOfColumns</url-pattern>
</servlet-mapping>

</web-app>

Table emp_details in the database:

mysql> select

| userld | Name | surname | addressl | address2 | town | country |

46

By Dr.S.K.Rath, BPUT

How to Delete a Table in MySQL

Consider a situation where we need to delete a table from a database.

To delete a table from the database firstly we need to make a connection with the database. When the
connection has been established pass a query for deleting a table inside the prepareStatement() method
and it will return the PreparedStatement object. Now call the method executeUpdate() of the
PreparedStatement interface which will helps us to know the status of the program.

The code of the program is given below:

import javax.servlet.*;
import javax.servlet._http.*;
import java.io.*;

import java.sqgl.*;

public class ServletDeletingTable extends HttpServlet{
public void doGet(HttpServletRequest request, HttpServletResponse response) throws

ServletException, 10Exception{
response.setContentType(""text/html'™);

PrintWriter pw = response.getWriter();
String connectionURL = "jdbc:mysql://localhost/kailash;
Connection connection;
try{
Class.forName("'org-gjt.-mm_mysql .Driver™);
connection = DriverManager.getConnection(connectionURL, "root', "admin');

PreparedStatement pst = connection.prepareStatement('drop table emp_sal™);
int 1 = pst.executeUpdate();

it (1==0){
pw.println(""Table has been deleted™);

else{
pw.printIn(""Table has not been deleted™);

catch(Exception e){
pw.printIn(""The exception is " + e);

}
}

XML File for this program:

<?xml version="1.0" encoding=""15S0-8859-1""?7>
<IDOCTYPE web-app

47

J2EE
By Dr.S.K.Rath, BPUT

PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_ 3.dtd'>

<web-app>
<servlet>
<servlet-name>Kailash</servlet-name>
<servlet-class>ServletDeletingTable</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Kailash</servlet-name>
<url-pattern>/ServletDeletingTable</url-pattern>
</servlet-mapping>

</web-app>

Table in the database before deletion:

mysql> select * from emp_sa

EmpName salary |
B S — S +

CUENY 15000 |
vinod 12000 |

2 rows in set (0.00 sec)

The output of the program is given below:

) Mozilla Firefox

File Edit Miew Go Bookmarks Tools Help

I —
<:| T |_l W @ E’h I htkp: fflocalhost: 3050/ Delete T able) ServietDeleting Table

| | Customize Links | | Free Hokmail | | Windows

Table has been deleted

Natural Left Join

In this program we are going to join the two table by using the servlets and the result will be displayed
in the browser. This join will be natural left join.

To join the tables firstly it is important to make a connection between the java class and the database. In
our program we are using the MySql database. To join the table in a natural left join manner it is
important to have those tables in our database. First of all make a class named
ServletNaturalJoiningTables. The name of the class should be such that it becomes clear that what the
program is going to do. The logic of the program will be written inside the doGet() method which takes
two arguments HttpServletRequest and HttpServiletResponse. call the method getWriter() of the
PrintWriter class, which is responsible for writing the contents on the browser. Our priority is to join
the two tables so pass a query in prepareStatement() method which will return the PreparedStatement
object.

The result will be displayed to you by the object of the PrintWriter class.

The code of the program is given below:

48

http://www.roseindia.net/servlets/ServletNaturalJoiningTables.shtml

J2EE
By Dr.S.K.Rath, BPUT

import java.sql.*;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ServletNaturalJoiningTables extends HttpServiet{
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, 10Excepti

response.setContentType(""text/html™);
PrintWriter pw = response.getWriter();
String connectionURL = "jdbc:mysql://localhost/kailash;
Connection connection;
try{
Class.forName("'org.gjt.mm.mysql .Driver™™);
connection = DriverManager.getConnection(connectionURL, "root', "admin');

PreparedStatement pst = connection.prepareStatement('SELECT * FROM "'+"emp_details
NATURAL LEFT JOIN "+"emp_sal

ResultSet rs = pst.executeQuery();
pw.printIn("Userld"” + '"\t" + "Firstname"™ + "\t" + "Salary'+"
");
while(rs.next()){

String id = rs.getString('userid™);

String name = rs.getString(‘'Name'™);

String sal = rs.getString(“salary'™);

pw.printIn(id + "\t\t" + name + "\t\t" + sal + "
");

catch (Exception e) {
pw.printIn(""The statement is not executed™);

}
}

web.xml file for this program:

<?xml version="1.0" encoding=""1S0-8859-1"?>

<IDOCTYPE web-app

PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd">

<web-app>
<servlet>
<servlet-name>Kailash</servlet-name>
<servlet-class>ServletNaturalJoiningTables</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Kailash</servlet-name>
<url-pattern>/ServletNaturalJoiningTables</url-pattern>
</servlet-mapping>
</web-app>

The output of the program is given below:

49

J2EE
By Dr.S.K.Rath, BPUT

E:) Mozilla Firefox

File Edit Wiew Go Bookmarks Tools Help

. —
<:| - Ll«> - @ |_| @ I http: filocalhost: 8080 Matur alLeft Joint Serylethatural Joining Tables

| | Customize Links | | Free Hotmail | | Windows

Tzerld Firstname Salary
73979 milfigar 15000

Select Color

In this program we are going to selected the various color and on the basis of the selection the output
will be displayed to the user.

To make this program firstly we need to make one html page. Inside the page we will have one select
option in which we will have our colors. We will also have a submit, clicking on which the values we
have entered will be transferred to the server.

On the server we will create a session. The values which we have entered in the html form will be
retrieved by the getParameterValues() of the request object. It returns the array of String. We will
check the condition if there is any session available or not. If yes then we will set the attribute by using
the setAttribute() method of the HttpSession object. The attribute we have set will be retrieved by the
getAttribute method of the HttpSession object in the next page and the value will be displayed on the
browser by the PrintWriter object.

The code of the program is given below:

<IDOCTYPE HTML PUBLIC **-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv=""Content-Type'" content="text/html; charset=1S0-8859-
1>
<title>Select the list of colors</title>
</head>
<body>
<form action = "/ServletProject/ColorPage>
<select name = "colors™"™ size = 5 multiple>
<option selected>Green</option>
<option>Red</option>
<option>Yellow</option>
<option>Blue</option>
<option>Black</option>
</select>
<input type = "submit" name = "submit'>
</form>
</body>
</html>

import java.io.*;

50

http://www.roseindia.net/servlets/SelectColor.shtml

J2EE

By Dr.S.K.Rath, BPUT

import javax.servlet.*;
import javax.servlet.http.*;

/**

* Servlet implementation class for Servlet: ColorPage
*

*/

public class ColorPage extends javax.servlet.http.HttpServlet implements
javax.servlet.Servlet {

/* (non-Java-doc)

* @see javax.servlet.http.HttpServlet#HttpServlet()
*/

public ColorPage() {

super();

}

/* (non-Java-doc)
* @see javax.servlet.http.HttpServlet#doGet
(HttpServletRequest request, HttpServletResponse response)
*/
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
/[TODO Auto-generated method stub
response.setContentType("text/html");
PrintWriter pw = response.getWriter();
HttpSession session = request.getSession();
String colors[] = request.getParameterValues(*colors");
if(session!=null)
{
session.setAttribute("'color",colors);
session.setMaxlInactivelnterval(60);
}
pw.printIin(*<html><body bgcolor =cyan>");
for(int i = 0; i<colors.length; i++)

pw.printIn("The selected colors are™ + colors[i]+ "
");
}

pw.printin(*<form action = /ServletProject/GetColors>");
pw.printin(“<input type = submit name= submit)>");
pw.printin("</form></body></html>");

}

/* (non-Java-doc)

* @see javax.servlet.http.HttpServlet#doPost(HttpServletRequest request,
HttpServletResponse response)

*/

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

/[TODO Auto-generated method stub

}

}

import java.io.*;
import javax.servlet.*;

51

J2EE

By Dr.S.K.Rath, BPUT

import javax.servlet.http.*;

/**

* Servlet implementation class for Servlet: GetColors
*

*/

public class GetColors extends HttpServlet {

/* (non-Java-doc)

* @see javax.servlet.http.HttpServlet#HttpServlet()
*/

public GetColors() {

super();

}

/* (non-Java-doc)

* @see javax.servlet.http.HttpServlet#doGet(
HttpServletRequest request, HttpServletResponse response)
*/

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

/[TODO Auto-generated method stub
response.setContentType("text/html™);

PrintWriter pw = response.getWriter();

HttpSession session = request.getSession(false);

if(session == null)

{

pw.printin(*No session is available™);

pw.printin(*We are creating a session for you. Creating.....");
session = request.getSession();

}

else

{

String getColors[] = (String[])session.getAttribute("color");
pw.printIn("<html><body bgcolor = cyan>");

for(int i= 0; i<getColors.length;i++)

pw.printIn("The selected colors are " + getColors][i] + "
");

¥
pw.printin("<htmI><body>");

}

/* (non-Java-doc)

* @see javax.servlet.http.HttpServlet#doPost(

HttpServletRequest request, HttpServletResponse response)

*/

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

/[TODO Auto-generated method stub

}

}

The output of the program is given below:

52

J2EE

By Dr.S.K.Rath, BPUT
=l (] @;,"-"" |httl:l:,I',I'|EIIIE|||‘|I:IS|::BUBU,I'SEF'-.-‘|EtF'r‘DjEEt,I'CI:I|I:IFF'E|I;|E.htl‘l‘l|

submit Cluery

=l (= (:-f{h' |http:,l',l'l-:u:alhl:ust:SI:IBI:I,I'SEWIEI:F‘rl:uject,l'CDIDrF‘age.html

IE‘ [y
Blue
Black [Submit Cuery l

#5 = Q-é‘h' |http:,l',l'Iu:u:thu:usI::BDSEI,!'ServIetF‘ru:uject,l'Cu:qu:urP'age?u:

The selected colors areGreen
The zelected colors are ¥ ellow

[Submit Query]

#=) (= Qﬁ,{h |hl:l:p:,l',l'll:u:alhcnst:BIIIEI:I,I'SEWIEI:F‘rl:uject,l'GetCDIDrs':

The selected colors are Green
The gelected colors are Yellow

How to connect to MySql Database from Servlet?

o A HoME ©

In this example we will show you how to connect to MySQL database and perform select operation.
You will learn the JDBC steps necessary to connect to the MySQL Database and execute the query.

Here we are using the MySQL jdbc driver for making the connection. You can download the jdbc driver
for MySQL from http://dev.mysgl.com/downloads/connector/j/5.1.html and then put the driver jar file
into the classpath.

You have to first create the a table in MySQL database and then connect it through JDBC to show all the
records present there.

MySql Table Structure:
CREATE TABLE “servlet” (

53

http://dev.mysql.com/downloads/connector/j/5.1.html

J2EE
By Dr.S.K.Rath, BPUT

“id” int(11) NOT NULL auto_increment,
“name’ varchar(256) default NULL,
PRIMARY KEY (id")

) ENGINE=InnoDB DEFAULT
CHARSET=latin1;

/*Data for the table “servlet™ */

insert into “servlet’("id","'name’) values
(1,'sandeep"),(2,'amit"),(3,'anusmita’),(4,'vineet');

Here is the code of Example:

// *DataBase Connectivity from the Servlet.
import java.io.*;

import java.util._*;

import javax.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;
import java.sgl.Connection;
import java.sgl.DriverManager;
import java.sqgl .ResultSet;
import java.sqgl.SQLException;
import java.sgl.Statement;

public class DBConnection extends HttpServlet {
public void service(HttpServletRequest request,HttpServletResponse response)

throws 10Exception, ServletException{

response.setContentType(""text/html™);
PrintWriter out = response.getWriter();
out_printin('<html>");
out.printIn('<head><title>Servlet JDBC</title></head>"");
out.printin('<body>");
out.printIn(’<hl>Servlet JDBC</h1>");
out_printIn('</body></html>");
// connecting to database
Connection con = null;
Statement stmt = null;
ResultSet rs = null;
try {

Class.forName("'com.mysql . jdbc.Driver');

con =DriverManager.getConnection ("jdbc:mysql://192.168.10.59:3306/example™,

"root", "root");

stmt = con.createStatement();
rs = stmt.executeQuery("'SELECT * FROM servlet'™);
// displaying records
while(rs.next()){

out.print(rs.getObject(l).toString());

out.print(""\t\t\t");

out_print(rs.getObject(2).toString());

out_print('
");

}
} catch (SQLException e) {
throw new ServletException(''Servlet Could not display records.", e);
} catch (ClassNotFoundException e) {
throw new ServletException(*'JDBC Driver not found.™, e);

54

J2EE

By Dr.S.K.Rath, BPUT

3} finally {
try {
if(rs = null) {
rs.close(Q);
rs = null;

}

if(stmt '= null) {
stmt.close();
stmt = null;

}
if(con = null) {

con.close();
con = null;

}
} catch (SQLException e) {}

out.close();
}

Program Description:
The following query is used to fetch the records from database and display on the screen.

stmt = con.createStatement();
rs = stmt.executeQuery("'SELECT * FROM servlet'™);
// displaying records
while(rs.next()){
out.print(rs.getObject(l).toString());//You can also
rs.getString(l);
out.print("\t\t\t");
out.print(rs.getObject(2).toString());//You can also
rs.getString(2);
out.print('
");
}

Other JDBC statement you can understand easily.

Output:

Serviet JDBC

1 sandeep
2 armt

2 atmstnita
4 mneet

Download Source Code

Refresh a Web Page Using In Servlet

user

user

55

http://www.roseindia.net/servlets/DBConnection.zip

J2EE
By Dr.S.K.Rath, BPUT
In this simplified example we develop an application to Refresh a web Page using Servlet. We create
two file timer.html and timer.java. When a web page (“timer.html™) run on browser then it will call to
Servlet ("timer.java") and refresh this web page and print the current Date and Time after 10 sec on the
browser as a output.

Step 1: Create a web page(timer.html) to call a Servlets.

timer.html

<HTML>
<HEAD>
<TITLE>Refresh Servlet Timer</TITLE>
<META NAME=""Generator’ CONTENT="EditPlus'>
<META NAME=""Author™ CONTENT=""">
<META NAME="Keywords' CONTENT="""">
<META NAME="Description' CONTENT=""'>
<style type=""text/css'>
A:link {text-decoration: none;
padding: 3px 7pX;
margin-right: 3px;

border-bottom: none;

color: #2d2b2b; }

A:visited {text-decoration: underline;
padding: 3px 7px;
margin-right: 3px;

color: #2d2b2b; }
A-active {text-decoration: none}
A-hover {text-decoration: none;
padding: 3px 7pX;
margin-right: 3px;
border: Opx;

color: #2d2b2b; }
</style>

</HEAD>

<BODY>

<table width="200px" height="100px" align="center"™ bgcolor="#BBFFFF" border=0>

<tr>
<td style=""text-align:top;" valign="middle" align="center" border=0>
Refresh Servlet Timer
</td>
</tr>

56

http://www.roseindia.net/servlets/refreshServlet.shtml

J2EE
By Dr.S.K.Rath, BPUT

</BODY>
</HTML>

Step 2:Create a Servlet (timer.java) which refresh the page after every 10 seconds.

import java.io.*;

import javax.servlet.*;
import javax.servlet_http.*;
import java.util_*;

public class timer extends HttpServiet{

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, I0Exception{
response.setContentType("text/html™);
PrintWriter out = response.getWriter();

Date now = new Date(); // The current

out.printin('<html>");

out.printin('<head><title> Time Check </title></head>");
out.printin('<body>");

out.printIn('<table width="100%" align="center” valign="top">");
out.printin('<tr>");

out._printiIn(*'<td> ');

out.printin('</td>");

out.printin('</tr>");

out.printin(’'</tr>");

out.printin('<tr>");

out.printin('<td valign="top" align="center® valign="top">");
out.printin

('<p style="color:#00000;font-size:20pt™">The Time is Refresh After 10 Seconds.<
out.printin('<td>");

out.printin("</tr>");

out.printin('<tr>");

out.printIn(<td> ');

out.printin('</td>");

57

J2EE
By Dr.S.K.Rath, BPUT

out.printin('</tr>");

out.printin('</tr>");

out._printin('<tr>");

out.printin('<td> ');

out.printin('</td>");

out.printin('</tr>");

out.printin(’'</tr>");

out.printin('<tr>");

out.printin('<td style="background-color:#C6EFF7;color:blue;" width="50" align="c

out.printin(’'The current time is: " + now + "");

out.printin('</td>");

out.printin('</tr>");

out.printin(“<table>");

out.printin('</body></html>");
response.setHeader("'Refresh', "10™);

}
+

Save the above file into "timer\WEB-INF\classes" directory.

Step 3: Mapping the servlet (timer.java) in to web.xml file:

<?2xml version="1.0" encoding="1S0-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

<display-name>Welcome to Tomcat</display-name>
<description>

Welcome to Tomcat
</description>

<servlet>

<servlet-name>timer</servlet-name>
<servlet-class>timer</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>timer</servlet-name>
<url-pattern>/timer</url-pattern>
</servlet-mapping>

</web-app>

Step 4: Now compile the java code using javac command from command prompt.

Step 5: Start tomcat and type http://localhost:8080/timer/timer.html in the browser and Click on Text
Link "Refresh Servlet Timer" . Your browser should display the Current Time and Refresh after 10
seconds.

Successful Output of the program:

58

J2EE
By Dr.S.K.Rath, BPUT

Date and Time Refresh After 10 Seconds.

The current time 1s: Wed Jul 16 17:08:29 GNTHIS:30 2008

How to get client's address in a servlet

This is detailed java code to get client's address in a servlet. In this example we have used method
getremoteAddr() of the ServletRequest interface which returns IP address of the client in the string
format.

Syntax of the method : java.lang.String getRemoteAddr()

We have used a jsp page that is used to send a request to a servlet that execute the request and find the
ID address of the client's request. Before run this code create a new directory named "user" in the
tomcat-6.0.16/webapps and paste WEB-INF directory in same directory.

get_address.jsp

<%@page language="java'" session="true"
contentType=""text/html ;charset=150-8859-1" %>
Please Enter your Full Name
here:

<form name=""frm" method=""get"
action=""__/user/GetAddress"">
<table border = "0">
<tr align="left" valign="top">
<td>First Name:</td>

<td><input type=""text" name ="name"
/></td>
</tr>
<tr align="left" valign="top">
<td></td>

<td><input type="submit"™ name="submit"
value=""submit''/></td>
</tr>
</table>
</form>

Save this code as a .jsp file named "get_address.jsp" in the directory Tomcat-6.0.16/webapps/user/ and
you can run this jsp page with following wurl in address bar of the browser
"http://localhost:8080/user/get_address.jsp"

GetAddress.java

import java.io.*;

import java.util._*;

import javax.servlet.*;

import javax.servlet.http.*;

public class GetAddress extends HttpServlet {
public void doGet(HttpServletRequest

request,HttpServletResponse response)

59

http://www.roseindia.net/servlets/get-address.shtml
http://localhost:8080/user/get_address.jsp

J2EE
By Dr.S.K.Rath, BPUT

throws 10Exception, ServletException{
response.setContentType(""text/html™);
PrintWriter out = response.getWriter();
String name = request.getParameter(“'name™);
out.printIn(’’<h3>You have entered name : "
+ name + "'
");
out_printIn(’I1P Address
of request : "
+request.getRemoteAddr()+"<h3>");
}

}

Compile this java code and save .class file in directory C:\apache-tomcat-6.0.16\webapps\user\WEB-
INF\classes.

web.xml

<servlet>
<servlet-
name>GetAddress</servlet-name>
<servlet-
class>GetAddress</servlet-
class>
</servlet>
<servlet-mapping>
<servlet-
name>GetAddress</servlet-name>
<url-
pattern>/GetAddress</url-
pattern>
</servlet-mapping>

This is web .xml file use to map servlet. When run jsp page in the browser.....

2 Mozilla Firefox

File Edit Miew Histary Bookmarks Tools Help

<;j - - @ ﬁ hitbpe flocalhost S0EL

E Customize Links | | Free Hotmall |] ‘Windows

Please Enter your Full Name here:
IJmnew

subrmnit |

User enters first name and click on submit button.......

60

J2EE
By Dr.S.K.Rath, BPUT

f—:) Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

"\:j - A\ @ @ http: fflocalhost: 8080/ user /GetAddre:

E Customize Links | | Free Hotmaill | | ‘Windows

You have entered name @ Mahendra Singh
IP Address of request: 127.0.0.1

Client Auto Refresh in Servlets

This section illustrates you how client gets auto refresh.

We are providing you an example which explains you clearly. In the example, We have created the
session by request.getSession() method. The method response.addHeader(**"Refresh", "'15"") refreshes
the servlet after every 15 seconds till the servlet gets destroy.

Here is the code of ClientAutoServlet.java

import javax.servlet.ServletException;

import javax.servlet._http.HttpServlet;

import javax.servlet._.http.HttpServletRequest;
import javax.servlet._http.HttpServletResponse;
import javax.servlet_http.HttpSession;

import java.io.*;

public class ClientAutoServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse
response)throws ServletException, java.io.lOException {
HttpSession session = request.getSession();
Long times = (Long) session.getAttribute('"times™);
if (times == null)
session.setAttribute(""times'™, new Long(0));
long value = 1;
if (times = null)
value = (times.longvalue()) + 1;
it (value < 6)
response.addHeader ("'Refresh™, '15");
response.setContentType(""text/html'™);
Java.io.PrintWriter out = response.getWriter();
out.printin('<html><head><title>Client Auto Refresh Example
</title></head><body>"");
out_printIn("You"ve visited this page " + value + " times."™);
session.setAttribute("times"™, new Long(value));
out.printin(’'</body></html>");
}
}

In web.xml, do the servlet-mapping

<servlet>
<servlet-
name>ClientAutoServlet</servlet-

61

J2EE

name>

<servlet-
class>ClientAutoServlet</servlet-class>
</servlet>

<servlet-mapping>

<servlet-
name>ClientAutoServlet</servlet-
name>
<url-pattern>/ClientAutoServlet</url-
pattern>

</servlet-mapping>

Output will be displayed as:

3.'_‘_1-;}EIient Auto Refresh Erample - Mozilla Firefox

File Edit Wiew History Bookmarks

Tools

Help

- c M e I@|http:,l‘,l'ln:-calhnst:8tl&

@Mast Wisiked ,Getting Started 5. Latest Headlines |jt

Tou've wisited this page 3 tines.

After 15 seconds, page will get refresh. Output will be:

3.'_‘_'-;}EIient Auto Refresh Example - Mozilla Firefox

File Edit Wiew History Bookmarks

Tools

Help

- c M T I@ |htt|:u:,|',|'|u:u:alhu:|st:f

EI Maost isited " iaekting Started 5 | Latest Headlines |

You've wsited this page & times.

Simple Web Application using Servlet

By Dr.S.K.Rath, BPUT

In this section, we have developed a simple web application in Servlet . In this application user can add,
update and delete all the user information. We run this application on Apache Tomcat Server. To
Download the latest version of Server click on the link http://www.roseindia.net/struts/struts2/struts-2-
download.shtml. Download the code and Run the application on browser with the url.

http://localhost:8080/servlet/index.jsp

Brief description of the flow of the application:

1) This application having a link "Add New User" to add new User in the database.

2) In this application having two button's "Edit" and "Delete".

"Edit" : This button updates the user Information and

62

http://www.roseindia.net/servlets/web-application.shtml
http://www.roseindia.net/struts/struts2/struts-2-download.shtml
http://www.roseindia.net/struts/struts2/struts-2-download.shtml

J2EE

"Delete": This button Deletes the user information.

By Dr.S.K.Rath, BPUT

Step 1: Create a Home Page (""home.jsp'") to view all the user.

Add New User

1 vineet Vineet Banszal
2 arnar Lmar Eumar
3 atrut Lyt Eumar
4 santosh Santosh Fumear
Step:2 Create a web page
Add User

First Name
Last Name
UserName
Password
City

State
Country

Save

Step:3 Create

a web

page

Mew Delln Delty India
Mew Delti Delh India
Mew Deli Delht India
Mew Dellu Deltu India

(""addUser.jsp') to add

(“"edit.jsp™) to edit

Delete

new user.

the user.

63

J2EE

First Marme
Last IMatne
Tzerlame
Pazsword
City

State
Countty

Edit User

|‘*-fineet

|Eiansal

|uineet

I

|New Delhi

|Delhi

|Indiia

Upload Image using Servlet

This application illustrates how to upload an image using servlet.

By Dr.S.K.Rath, BPUT

In this example program a form is displayed to user, where user can browse the image file which is to be
uploaded on the server. Once the submit button is clicked the form data is posted to a servlet. Servlet

then processes the uploaded data and saves the image on the server.

Following programming code is developed in the application:

1. Form

Form JSP file is used to display the form to the user.
2. Servlet

JSP:

(Uploadlimage.java):

The Uploadlimage servlet is used to process the form data. After processing the form data, image is
saved in the images directory of the server. Servlet also saves the path of the image into database.
Finally the uploaded image is displayed on the browser with success message.

The Complete Application is as follows:

Image Link:

Uploaded image shows on the browser:

Image Details

|
Submit |

Browse . |

64

http://www.roseindia.net/servlets/upload-image.shtml

J2EE
By Dr.S.K.Rath, BPUT

inage mserted successtully

Source Code of uploadlmage.jsp

<html>
<head><title>Image Upload</title></head>

<body>
<form action="/example/Uploadlmage"™ method="post" enctype="multipart/form-data"
name=""productForm"” id="productForm'>

<table width="400px" align="'center" border=0 style="background-color:ffeeff;" >
<tr>
<td align=""center™ colspan=2 style="font-weight:bold;font-size:20pt;"'>
Image Details</td>
</tr>

<tr>
<td align="'center"™ colspan=2> </td>
</tr>

<tr>
<td>Image Link: </td>
<td>
<input type="file" name="file" id="File">
<td>
</tr>

<tr>

<td></td>

<td><input type="submit' name="'Submit" value="Submit'></td>
</tr>

65

http://www.roseindia.net/servlets/upload-image.shtml

J2EE

<tr>

By Dr.S.K.Rath, BPUT

<td colspan="2"> </td>

</tr>
</table>
</form>
</body>

</html>

Source Code of Uploadlmage.java

import java.io.*;

import java.sql.*;

import java.util.*;
import java.text.*;
import java.util._regex.*;
import org.apache.commons
import org.apache.commons
import org.apache.commons

import javax.servlet.*;

import javax.servlet._.http.

-Fileupload.servlet._ServiletFileUpload;
-Fileupload.disk.DiskFileltemFactory;
-Fileupload.*;

* -
”

public class Uploadlmage extends HttpServiet{
public void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, 10Exception {

PrintWriter out = response.getWriter();

boolean isMultipart =

ServiletFileUpload. isMultipartContent(request);

System.out.printIn("'request: "+request);

if (lisMultipart) {

System.out.printIn(""File Not Uploaded™);

} else {

FileltemFactory factory = new DiskFileltemFactory();
ServiletFileUpload upload = new ServletFileUpload(factory);
List items = null;

try {
items = upload.parseRequest(request);

System.out.printIn("items: "+items);
} catch (FileUploadException e) {
e.printStackTrace();
}
Iterator itr = items.iterator();
while (itr.hasNext()) {
Fileltem item = (Fileltem) itr_next();
if (item.isFormField()){
String name = item.getFieldName();
System.out.printIn("'name: '+name);
String value = item.getString();
System.out.printIn(value: "+value);

} else {

try {
String itemName = item.getName();

Random generator = new Random();
int r = Math.abs(generator.nextint());

66

J2EE

By Dr.S.K.Rath, BPUT

String reg = "[-*]";

String replacingtext = "';

System.out.printIn(""Text before replacing is:-" + itemName);
Pattern pattern = Pattern.compile(reg);

Matcher matcher = pattern._matcher(itemName);

StringBuffer buffer = new StringBuffer();

while (matcher.find()) {

matcher .appendReplacement(buffer, replacingtext);
}
int IndexOf = itemName. indexOf(".");
String domainName = itemName.substring(Index0f);
System.out.printIn('domainName: *+domainName);

String finalimage = buffer.toString(Q)+"_"+r+domainName;
System.out._printIn("Final Image==="+finalimage);

File savedFile = new File(''C:/apache-tomcat-6.0.16/
webapps/example/""+"images\\"+Final image);

item.write(savedFile);

out_printIn('<html>");

out.printin('<body>");

out._printlIn('<table><tr><td>");

out.printIn(’’");

out.printIn('</td></tr></table>");

Connection conn = null;
String url = "jdbc:mysql://localhost:3306/";
String dbName = ""test';

String driver = "com.mysql.jdbc.Driver";
String username = '‘root'';
String userPassword = "root";

String strQuery = null;
String strQueryl = null;

String imgLen=""";

try {
System.out.printIn("itemName::::: "+itemName);
Class.forName(driver).newlnstance();
conn = DriverManager .getConnection(url+dbName,username,userPassword);
Statement st = conn.createStatement();
strQuery = "insert into testimage set image=
int rs = st.executeUpdate(strQuery);
System.out.printIn("'Query Executed Successful ly++++++++++++++"");
out_printIn(image inserted successfully'™);
out.printIn('</body>");
out.printin('</html>");

} catch (Exception e) {
System.out.println(e.getMessage());

} finally {
conn.close();

+Finalimage+ ;

catch (Exception e) {
e.printStackTrace();

67

By Dr.S.K.Rath, BPUT

68

	J2EE
	J2EE
	Advantages of Java Servlets
	Installation, Configuration and running Servlets
	Displaying Date in Servlet
	A Holistic counter in Servlet
	Counter in Init() Method
	Snooping the server
	Snooping Headers
	Dice Roller
	Getting Init Parameter Names
	Passing Parameter Using Html Form
	Time Updater in Servlet
	Send Redirect in Servlet
	Session Tracking
	To Determine whether the Session is New or Old
	Session Last Accessed Time Example
	Display session value Using Servlet
	Hit Counter Servlet Example
	Inserting Data In Database table using Statement
	Retrieving Data from the table using Statement
	Inserting data from the HTML page to the database
	Retrieving Data from the table using PreparedStatement
	Getting Columns Names using Servlets
	Getting Number of Columns
	How to Delete a Table in MySQL
	Natural Left Join
	Select Color
	How to connect to MySql Database from Servlet?
	Refresh a Web Page Using In Servlet
	How to get client's address in a servlet
	Client Auto Refresh in Servlets
	Simple Web Application using Servlet
	Upload Image using Servlet

