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DEFINITION

An expression which expresses a
relation between an independent
variable and successive values or

Successive differences of dependent
variable iIs called a difference equation.



EXAMPLES

1102z
.yx+2_3yx+1+2yx_ X

m A%y — 20y —4y =0
m A’y —3A0%y -2y —4y_ =x(x—1)



ORDER AND DEGREE

m The order of a difference equation
expressed in terms of successive values
of y is the difference between the highest
and lowest subscripts or arguments of y

m The degree of a difference equation free
from A’ s is the highest exponent of the

y'S.



SOLUTION

m A solution of a difference equation Is any
function that satisfies It.

m The general solution of a difference
equation of order n is a solution that
contains n arbitrary constants or n
arbitrary function which are periodic with
period equal to the interval of differencing.



m The particular solution of a difference
equation is a solution obtained by
assigning particular values to the arbitrary
constants or functions.



LINEAR DIFFERENCE EQATION

m A difference equation in which
M Vil Lyidia L occur in the first
degree and are not multiplied together is
said to be linear difference equation.

m The general form of a linear difference
equation is as follows



CONTD....

B AoYx+ntA1Yx+n-1Foonnen An-1Yx+11anYx = R(X)
Where a; and R(x) are known function of x.

m If R(X) is zero then the above equation is called
nomogeneous difference equation.

m The solution can be obtained by the relation
V= U, + v,, Where u, is called complementary
function and v, uis called particular integral.




APPLICATION

m Difference equation can be applicable In
the following areas.

» Numerical methods to solve partial
differential equation.

> Fourier series
» Algebra and Analysis



First Derivative Approximations

m Backward difference: (u; — Ui1) / AX
m Forward difference: (Ui — U;) / AX

m Centered difference: (Uj: — Ui1) / 2AX



Taylor Expansion
B U(X T AX) = U(X) + u (OAX + 172 u " (X)(AX)
+1/6 u” ' (X)(AX)’ + O(AX)*

B UX— AX) = u(X) — u'(X)AXx + 1/2 u”(x)(Ax)2
- 116 u” (X)(AX)’ + O(AX)*



Taylor Expansion

u’'(X) = u(x) — u(x = Ax) + O(Ax)
AX
u’'(X) = u(x + Ax) — u(x) + O(Ax)
AX
u’(X) = u(x + Ax) — u(x — Ax) + O(AX)?
2AX




Second Derivative Approximation

m Centered difference: (Us — 2U; + Ux) / (AX)

m Taylor Expansion
u’(X) = u(x + Ax) — 2u(x) + u(x — Ax) + O(Ax)2
(AX)’




Function of Two Variables

U(jAX, ndf) ~ uj"
m Backward difference for t and x

% (jAX, nAt) ~ (U — u™) / At

% (iAX, nAt) ~ (u' = u™) / Ax



Function of Two Variables

m Forward difference for t and x

% (JAX, nAt) ~ (U™ = u") / At

% (jAX, nAt) ~ (U™ = u") / Ax



Function of Two Variables

m Centered difference for t and x
% (JAX, nAt) ~ (U™ = u"™™ / (2At)

% (jAX, nAt) ~ (U™ = u"") / (2AX)



Partial Differential
Equations

O Partial Differential Equations (PDES).
0 What is a PDE?

O Examples of Important PDEs.
O Classification of PDEs.



Partial Differential Equations

A partial differential equation (PDE) Is an
equation that involves an unknown function
and its partial derivatives.

Example
0% u(x,t) o u(x,t)
X ot

PDE involves two or more independent variables
(in the example x and t are independent variables)



Notation

0% u(x,t)
uxx 1 2
OX
0% u(x,t)
Uy =
ox ot

Order of the PDE = order of the highest order derivative.



Examples of PDESs

PDEs are used to model many systems In
many different fields of science and
engineering.

Important Examples:
m Laplace Equation
m Heat Equation
= \Wave Equation




Laplace Equation

2 2 2
0 u(x,2y, Z) ! 0 u(x,zy, Z) I 0 u(x,zy, 2l 0
OX oy 0z

Used to describe the steady state distribution of
heat in a body.

Also used to describe the steady state
distribution of electrical charge in a body.




Heat Equation

2 2 2
8u(xéyt/,z,t) :0{8 u +5 u +8 uj

ox* oy oz

The function u(x,y,z,t) Is used to represent
the temperature at time t in a physical body
at a point with coordinates (x,y,z)

o Is the thermal diffusivity. It is sufficient to
consider the case a = 1.



Simpler Heat Equation

8T(X,t) _GZT(X,’[) C o
ot OX°

T(x,t) I1s used to represent the temperature
attime t at the point x of the thin rod.




Wave Equation

82u(x,y,z,t)_C2[§2u o°u @J

Refiel)
ot 0 HHEE ) Vazg

The function u(x,y,z,t) Is used to represent t
displacement at time t of a particle whose
position at rest is (X,Y,2) .

The constant ¢ represents the propagation
speed of the wave.

ne



Classification of PDEs

Linear Second order PDEs are important
sets of equations that are used to model
many systems In many different fields of
science and engineering.

Classification Is important because:

m Each category relates to specific engineering
problems.

m Different approaches are used to solve these
categories.



Linear Second Order PDES

Classification

A second order linear PDE (2 - independent variables)
Au,+Bu,+Cu,+D=0,

A, B, and C are functions of xand y
D isa function of x, y, u,u,,andu,

is classified based on (B®> —4AC) as follows:
BZ—4AC <0  Elliptic

B°—4AC=0  Parabolic
B°—4AC >0 Hyperbolic




Linear Second Order PDE

Examples (Classification)

o°u(x, y) +8ZU(X, Y) _ g
OX* oy°

A=1B=0,C=1=B*-4AC<0

— Laplace Equation is Elliptic

Laplace Equation

One possible solution: u(x,y)=¢e*siny
u,=e’siny, u, =e"siny

X X At
u, =e"cosy, u, =—e'siny

u,, +U,, =0



Linear Second Order PDE

Examples (Classification)

oeu(x tyau(x 1)
SATHIETNH

A=a, B=0,C=0=B*-4AC=0

— Heat Equation iIs Parabolic

0

Heat Equation «

o°u(x,t)  o°u(x,t)

A NTTEETT
A=c*>0,B=0,C=-1=B*-4AC>0
= Wave Equation is Hyperbolic

Wave Equation c? 0



Boundary Conditions for PDEs

m [0 uniquely specify a solution to the PDE,
a set of boundary conditions are needed.

m Both regular and irregular boundaries are

possible. t

2
Heat Equation: « GURID) Rl =0 .
OX2 ot region of

u(0,t) =0 | interest

u(d,t)=0

u(x,0) = sin(z x)\J THE




The Solution Methods for PDEs

m Analytic solutions are possible for simple
and special (idealized) cases only.

m To make use of the nature of the
equations, different methods are used to
solve different classes of PDES.

m The methods discussed here are based
on the finite difference technique.



Parabolic Equations

O Parabolic Equations

O Heat Conduction
Equation

O Explicit Method
O Implicit Method
O Cranks Nicolson Method



Parabolic Equations

A second order linear PDE (2 - independent variables x, y)
Au,+Bu,+Cu,+D=0,

A, B, and C are functions of x and y

D isa function of x,y,u,u,,andu,

is parabolicif | B°—=4AC =0



Parabolic Problems

OT(xt) " T(xt)

Heat Equation : .
ot OX

TO,0)=T(Lt)=0

T (x,0) =sin(z X) ;

e I gice

O

* Parabolic problem (B“—-4AC =0)
* Boundary conditions are needed to uniquely specify a solution.



Finite Difference Methods

m Divide the interval x into sub-Intervals,
each of width h

m Divide the interval t into sub-intervals,
each of width k il

m A grid of points Is used for
the finite difference solution

m T, represents T(x;, )

m Replace the derivates by
finite-difference formulas




Finite Difference Methods

Replace the derivatives by finite difference formulas

. o°T
Central Difference Formula for —:

OX*
0°T (X, 1) T i =N+l Tiaj—2Tij 4T
OX* (AX)? h?
Forward Difference Formulafor%—I:

oT (x,t) | EEM VA LIV Bl DG

ot At K




Solution of the Heat Equation

e Two solutions to the Parabolic Equation
(Heat Equation) will be presented:

1. Explicit Method.:
Simple, Stability Problems.
2. Crank-Nicolson Method:

Involves the solution of a Tridiagonal
system of equations, Stable.



Explicit Method

OT (x,t)  0°T(x,t)
A, &
T(X,t+k)=T(xt) T(x—ht)=2T(x,t)+T(x+h,t)
k 1 h?

T(x,t+k)=T(xt) =%(T(x—h,t)—2T(x,t)+T(x+h,t))

Define A :L2
h
TXt+K)=AT(x=ht)+(1-22) T(X,t)+A T(x+h,t)



Explicit Method

How Do We Compute?
T(X,t+k)=AT(x=h,t)+(1-24) T(x,t)+A T(x+h,t)
means

T(x,t+K)

0 \
o/ ‘o 0—
T(x-h,t) T(X,t)



Convergence and Stability

T (X,t+k) can be computed directly using:
TXt+k)=AT(x-h,t)+(1-21) T(x,t)+4 T(Xx+h,t)

Can be unstable (errors are magnified)

2
To guarantee stability, (1-21)>0 = /IS% =K sh?

This means that k 1s much smaller than h
This makes it slow.



Example 1

0% u(x,t) o u(xt) 1

. 0
OX ot
u(x—h,t)—2u(x,t) +u(x+h,t) u(x,t+k)-u(xt) 0
h? k |

0

16(u(x —h,t) — 2u(x,t) + u(x + h,t))— 4(u(x,t + k) —u(x,t))

u(x,t+k)=4 u(x—h,t)—7 u(x,t)+4 u(x+h,t)



Example 1
u(x,t+k)=4u(x—-h,t)-7 u(x,t) +4 u(x+h,t)

t=1.0 O¢ 0 0 0 ' 0
t=0.7  0¢ 0 0 0 ' 0
t=0.5 0° 0 0 0 '
t=0.2 0 0 0 0 0

t=0 0o 0 0 0 ' 0

Sin(0.2 Sin(0. Sin(0.75

x=0. °Tlo. Mg b x=1.
0 HHTHEIUGE T e



Example 1

u(0.25,0.25) =4 u(0,0)—7 u(0.25,0) +4 u(0.5,0)
=0-7sin(z/4)+4sin(xz/2) =-0.9497

t=1.0 O¢ 0 0 0 ' 0
t=0.7  0¢ 0 0 0 ' 0
t=0.5 0° 0 0 0 '
t=0.2 0 0 0 0 0

t=0 0o 0 0 0 ' 0

Sin(0.2 Sin(0. Sin(0.75

x=0. °Tlo. Mg b x=1.
0 HHTHEIUGE T e



Crank-Nicolson Method

The method involvessolving a Tridiagonal system of linear equations.
The method is stable (No magnification of error).
— We can use larger h,k (compared to the Explicit Method).



Crank-Nicolson Method

Based on the finite difference method
1. Divide the interval x into subintervals of width h
2. Divide the interval t into subintervals of width k
3. Replace the first and second partial derivatives with their
backward and central difference formulas respectively :
ou(x,t) _u(x,t)—u(x,t—k)

ST k

0% u(x,t)  u(x—h,t)—2u(x,t)+u(x+h,t)
OX° h?




Crank-Nicolson Method

2
g u(;<,t) :8 10 becomes
OX ot

Heat Equation:

u(x—nh,t)-2u(x,t) +u(x+h,t) u(xt)—-u(xt—Kk)
h? | Kk

Lz(u(x —h,t) = 2u(x,t) + u(x + h,t)) = u(x,t) —u(x,t - k)

h
K K K
—Fu(x—h,t) +(1+ ZF) u(x,t) —Fu(x+ h,t) =u(x,t—k)




Crank-Nicolson Method

Define 4 = % then Heat equation becomes::

—Au(x=h,t)+(1+21) u(x,t) =24 u(x+h,t) =u(x,t—k)

u(x-h,t) u(x,t)




Crank-Nicolson Method

The equation:

—Au(x=h,t)+(1+22) u(x,t)—Au(x+h,t) =u(x,t —k)
can be rewritten as :

— AU+ @Q+22) U - AU =V 4

and can be expanded as a system of equations (fix j =1):
— AUy +(A+24) Uy =AUy = Uy

— AUy +(A+24) Uy — AUz = Uy

— AUy +(1+24) U3y — AUy =Us

— AUz +(1+24) Uy — AU, =Uy,



Crank-Nicolson Method

—Au(x=h,t)+(1+24) u(x,t)—Au(x+h,t) =u(x,t—k)
can be expressed asa Tridiagonal system of equations:

a2t 2 Upg | [ Upo+A Uy |
-A 1+242 -2 U, 4 Us o
AR LT A e T Y,

| —A 1422 | |Usg| |Usg+AUsy

where u, 4, U, ¢, U3 o, and U,  are the initial temperature values
at X =X, +h, X, +2h, X, +3h, and x, +4h
Uy, and us, are the boundary valuesat x = X, and X, +5h



Crank-Nicolson Method

The solution of the tridiagonal system produces :

The temperature values U, 4, U, 1, Uz, and U, ; at t =ty + K
To compute the temperature values at t =ty + 2k

Solve a second tridiagonal system of equations ( j = 2)

AP HE Uo | [Ua+AUg,
-4 1+24 -2 U, 5 Us 1
LR 2R Y T

| —A 1422 |Uyo | |Usy+AUs,

To compute u, ,, U, ,, U3 ,,and U, ,
Repeat the above step to compute temperature values at t, + 3k, etc.



Example 2

Solve the PDE :
o°u(x,t) ou(x,t)
&% et T
u(0,t)=u(Lt)=0
u(x,0) =sin(xz x)

0

Solve using Crank - Nicolson method
Use h=0.25 k=0.25 tofind u(x,t) for x [0,1],t €[0,]1]



Example 2
Crank-Nicolson Method

0° u(xt) au(xt) _

; 0
OX ot
u(x—h,t) —2u(x,t) +u(x+h,t) u(x,t)—u(x,t-k)
h? ] k

16(u(x —h,t) — 2u(x,t) + u(x + h,t)) - 4(u(x,t) —u(x,t —k))

0
. Kk
Define A :—2:4
h

—4u(x—h,t)+9u(x,t) =4 u(x+h,t) =u(x,t —k)
—4 Uiy +9U; j =4 Uiy j =Uj 4



Example 2



Example 2
Solution of Row 1 at t1=0.25 sec

The Solution of the PDE at t, = 0.25sec Is the solution
of the following tridiagonal system of equations:

-4 9 —4/||uy, |=| sin(0.57)
-4 9 ||uy, | [sIn(0.757) |

u, | [0.211517
—| u,, |=|0.29912
U, | |0.21151




Example 2:

Second Row at t2=0.5 sec



Example 2

Solution of Row 2 at t2=0.5 sec

The Solution of the PDE att, = 0.5sec is the solution
of the following tridiagonal system of equations:

-4 9 || U;, Uy, | |0.21151

u,| [0.063267
Uy, | |0.063267




Example 2
Solution of Row 3 at t3=0.75 sec

The Solution of the PDE at t; = 0.75sec Is the solution
of the following tridiagonal system of equations:

o us| [u,]| [0.063267°
~4 9 —4||uy,|=|u,, |=|0.089473
=4 9 ||Uss| |us,| |0.063267
U 5| [0.018924
=|U,4 |=|0.026763
Uss | |0.018924




Example 2

Solution of Row 4 at t4=1 sec
The Solution of the PDE at t, =1sec Is the solution
of the following tridiagonal system of equations:

o || LA u.] [us] [0.0189247
B 4 9 _U3’4_ U3’3 _0018924_

U, | [0.0056606
= u, , | =| 0.0080053
Uz, | |0.0056606




THANK YOU
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