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…as long as there were no 
machines, programming 
was no problem at all; when 
we had a few weak 
computers, programming 
became a mild problem, and 
now that we have gigantic 
computers, programming 
has became an equally 
gigantic problem. In this 
sense the electronic 
industry has not solved a 
single problem, it has only 
created them – it has 
created the problem of 
using its products.  To put it 
in another way: … society’s 
ambition to apply these 
machines grew in 
proportion and it is the poor 
programmer … 
 

Edsger W. Dijkstra 
In 

Turing Award Lecture 
(1972) 

1.10 Further Readings 18 
 

1.0 INTRODUCTION 

Most of the time, the computers are talked in respect of their wonderful 
achievements (and, of course, once in a while, also about the blunders committed by 
some computer system, e.g., of withdrawing or depositing more than 99 million 
dollars from a bank account against the required 99 dollars only).  However, most 
of the non-specialists are not aware of the general limitations of computers.  
One very important fact, in this respect, is that there are large number of problems 
which no computer, including any one that may be designed and developed at any 
time in the future, is and will ever be able to solve.  Rather, the number of problems 
that can be solved computationally is much less than the number of problems that 
can never be solved using only computational means.  In this unit, we discuss issues 
and problems that exhibit the limitations of computing devices in solving problems.   
 
In this sense, we explore the limits on the capabilities of computers.  We also prove 
one of the deepest results in computer science: the undecidability of the halting 
problem.  Alan Turing first proved this result in 1936.  It is related to Gödel's 
Incompleteness Theorem which states that there is no system of logic strong enough 
to prove all true sentences of number theory.  Essentially, Gödel uses a fixpoint 
construction to construct a self-referential sentence of number theory which states 
something to the effect:  "I am not provable".  The argument is quite complex.  
However, the argument is basically analogous to the one given in support of the fact 
that the truth value of the statement ‘I am telling lies’ can not be determined. 
 
In view of the large number of applications of modern computer systems that help us 
in solving problems from almost every domain of human experience, you might be 
tempted to think that computers can solve any problem if the problem is properly 
formulated. You'd soon find that there are problems, even from a highly formal 
discipline like mathamatics, which can be properly formulated, but can not be solved 
by computational means to through computational means those problems from 
disciplines like social science’s, philosophy or religion etc. that can't even be 
formulated as computational problems. 
 
We will discuss problems, which though can be formulated properly, yet are not 
solvable through any computational means.  And we will prove that such problems 
cannot be solved  no matter 

• what language is used?  

• what machine is used?  

• much computational resources are devoted in attempting to solve the problem 
etc.  
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For problems that can not be solved by computational means, we can approximate 
their solutions, but it's impossible to get the perfectly correct solutions in all cases.  
One of the important problem among all such problems is the halting problem: 
given a program and an input, does the program halt when applied to that input?  
Answer: it's impossible to determine in general.  However, there may be some 
special cases for which you may get the answer, but there is no general algorithm 
that works in all cases, and provably so. 
 

1.1  OBJECTIVES 

At the end of this unit, you should be able to: 

• show that Halting Problem is uncomputable/unsolvable/undecidable; 
• to explain the general technique of Reduction to establish other problems as 

uncomputable;  
• establish unsolvability of many unsolvable problems using the technique of 

reduction; 
• enumerate large number of unsolvable problems, including those about Turing 

Machines and about various types of grammars/languages including context-
free, context-sensitive and unrestricted etc.   

 

1.2 DECIDABLE AND UNDECIDABLE 
PROBLEMS 

A function g with domain D is said to be computable if there exists some Turing 
machine  

M = (Q, Σ, Τ, δ, q0, F) such that  
q0 w ⏐⎯*   qf g(w) ,    qf ∈ F, for all w ∈ D. 
 
where 
 
q0 ω denotes the initial configuration with left-most symbol of the string ω being 
scanned in state q0  and  qf g(ω) denotes the final c. 
 
A function is said to be uncomputable if no such machine exists. There may be a 
Turing machine that can compute f on part of its domain, but we call the function 
computable only if there is a Turing machine that computes the function on the 
whole of its domain. 
 
For some problems, we are interested in simpler solution in terms of “yes” or “no”. 
For example, we consider problem of context free grammar i.e., for a context free 
grammar G, Is the language L(G) ambiguous. For some G the answer will be “yes”, 
for others it will be “no”, but clearly we must have one or the other. The problem is 
to decide whether the statement is true for any G we are given.  The domain for this 
problem is the set of all context free grammars. We say that a problem is decidable if 
there exists a Turing machine that gives the correct answer for every statement in the 
domain of the problem. 

 
Similarly, consider the problem of equivalence of context free grammar i.e., to 
determine whether two context free grammars are equivalent. Again, given context 
free grammars G1  and G2, the answer may be “yes” or “no”. The problem is to 
decide whether the statement is true for any two given context free grammars G1 and 
G2.  The domain for this problem is the set of all context free grammars. We say that 
a problem is decidable if there exists a Turing machine that gives the correct answer 
for every statement in the domain of the problem. 
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A class of problems with two outputs “yes” or “no” is said to be decidable (solvable) 
if there exists some definite algorithm which always terminates (halts) with one of 
two outputs “yes” or “no”. Otherwise, the class of problems is said to be undecidable 
(unsolvable). 

 

1.3 THE HALTING PROBLEM 

There are many problem which are not computable. But, we start with a problem 
which is important and that at the same time gives us a platform for developing later 
results. One such problem is the halting problem. Algorithms may contain loops that 
may be infinite or finite in length. The amount of work done in an algorithm usually 
depends on the data input. Algorithms may consist of various numbers of loops, 
nested or in sequence. Informally, the Halting problem can be put as:  
 
Given a Turing machine M  and an input w to the machine M, determine if the 
machine M  will eventually halt when it is given  input w.  

…the programming task 
is (still) an intellectual 
challenge of the highest 
caliber…How not to get 
lost in the complexities of 
our own making is still 
computing’s core 
challenge… 
 
         Edger W. Dijkstra
                      in 
        Postscript (1986) to  
         his  1972 Turing   
        Award  Lecture 

 
Trial solution: Just run the machine M with the given input w.  

• If the machine M halts, we know the machine halts.   

• But if the machine doesn't halt in a reasonable amount of time, we cannot 
conclude that it won't halt.  Maybe we didn't wait long enough.  

 
What we need is an algorithm that can determine the correct answer for any M and w 
by performing some analysis on the machine’s description and the input. But, we 
will show that no such algorithm exists. 

 
Let us see first, proof devised by Alan Turing (1936) that halting problem is 
unsolvable.   
 
Suppose you have a solution to the halting problem in terms of a machine, say, H.  
H takes two inputs:  

1. a program M and  
2. an input w for the program M.  
 
H generates an output "halt" if H determines that M stops on input w or it outputs 
"loop" otherwise. 
 
 

 
M                                     halt 
                                     
 w                                     loop 
 
                    H 

 
 
 
  
  
 
 
 
 
So now H can be revised to take M as both inputs (the program and its input) and H 
should be able to determine if M will halt on M as its input.  
Let us construct a new, simple algorithm K that takes H's output as its input and does 
the following: 

1. if H outputs "loop" then K halts,  
2. otherwise H's output of "halt" causes K to loop forever.  

 
That is, K will do the opposite of H's output.  
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M 
 
 
             

 
      M                                 halt 
                                                       loop 
                                                 
     M                                  loop          halt 
                    H 

 
 
 
 
 

Since K is a program, let us use K as the input to K. 
 
 

 
      K                               halt 
                                                       loop 
                                                 
     K                                  loop          halt 
                    H 

 
K 
 
 
 
 
 
 
 
 
If H says that K halts then K itself would loop (that's how we constructed it). 
If H says that K loops then K will halt. 
 
In either case H gives the wrong answer for K. Thus H cannot work in all cases.  
 
We've shown that it is possible to construct an input that causes any solution H to 
fail. Hence, The halting problem is undecidable. 
 
Now, we formally define what we mean by the halting problem. 
 
Definition 1.1: Let WM be a string that describes a Turing machine M = (Q, Σ, Τ, δ, 
q0, F), and let w be a string in Σ*. We will assume that  WM and w are encoded as a 
string of 0’s and 1’s. A solution of the halting problem is a Turing machine H, which 
for any WM and w, performs the computation 

 
q0 WM w ⏐⎯*   x1 qy x2 if M applied to w halts, and 
 
q0 WM w ⏐⎯*   y1 qn y2 if M applied to w does not halt. 
 
Here qy and qn are both final states of H. 

 
Theorem 1.1: There does not exist any Turing machine H that behaves as required 
by Definition 1.1. The halting problem is therefore undecidable. 
 
Proof: We provide proof by contradiction. Let us assume that there exists an 
algorithm, and consequently some Turing machine H, that solves the halting 
problem. The input to H will be the string WM w. The requirement is then that, the 
Turing machine H will halt with either a yes or no answer. We capture this by asking 
that H will halt in one of two corresponding final states, say, qy  or qn .As per 
Definition 8.1, we want H to operate according to the following rules: 
 
q0 WM w ⏐⎯* 

M    x1 qy x2                      if M applied to w halts, and  
q0 WM w ⏐⎯* 

M    y1 qn y2             if M applied to w does not halt. 
 
This situation can also be visualized by a block diagram given below:  
             

                                 qByB 
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             WM w     
 
 
 
 
 
 
 
 
 
 
Next, we modify H to produce H1 such that  

• If H says that it will halt then H1 itself would  loop  

• If H says that H will not halt then H1 will halt.  
 

We can achieve this by adding two more states say, q1 and q2. Transitions are 
defined from qy to q1, from q1 to q2 and from q2 to q1, regardless of the tape symbol, 
in such a way that the tape remains unchanged. This is shown by another block 
diagram given below:   

 
 

                                 qy                           
                                                      q1                q2 

                                                    
 

 
   q0
 
 
                                  
                                 qn 

 
 
 
            WM w     
 
 
 
 
 
 
 
Formally, the action of H1 is described by  
 

q0 WM w ⏐⎯* 
H1   ∞           if M applied to w halts, and  

 
q0 WM w ⏐⎯* H1   y1 qn y2     if M applied to w does not halt. 
 

Here, ∞ stands for Turing machine is in infinite loop i.e., Turing machine will run 
forever. Next, we construct another Turing machine H2 from H1. This new machine 
takes as input WM and copies it, ending in its initial state q0. After that, it behaves 
exactly like H1. The action of H2 is such that    
 
q0 WM⏐⎯* 

H2   q0 WM WM ⏐⎯* 
H2   ∞           if M applied to WM halts, and  

 
q0 WM⏐⎯* 

H2 y1 qn y2     if H2 applied to WM does not halt. 
This clearly contradicts what we assumed.  In either case H2 gives the wrong answer 
for WM. Thus H cannot work in all cases. 

 
We've shown that it is possible to construct an input that causes any solution H to 
fail. Hence, the halting problem is undecidable. 
 
Theorem 2.2:  If the halting problem were decidable, then every recursively 
enumerable language would be recursive. Consequently, the halting problem is 
undecidable. 
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Proof:  Recall that  
 
1. A language is recursively enumerable if there exists a Turing machine that 

accepts every string in the language and does not accept any string not in the 
language.  

 
2. A language is recursive if there exists a Turing machine that accepts every 

string in the language and rejects every string not in the language.  
 

Let L be a recursively enumerable language on Σ, and let M be a Turing machine 
that accepts L.  Let us assume  H be the Turing machine that solves the halting 
problem. We construct from this the following algorithm: 

1. Apply H to WM w. If  H says “no”, then by definition w is not in L. 
 
2. If H says “yes”, then apply M to w. But M must halt, so it will ultimately tell 

us whether w is in L or not. 
 
This constitutes a membership algorithm, making L recursive. But, we  know that 
there are recursively enumerable languages that are not recursive. The contradiction 
implies that H cannot exist i.e., the halting problem is undecidable. 
 

1.4  REDUCTION TO ANOTHER UNDECIDABLE 
PROBLEM 

Once we have shown that the halting problem is undecidable, we can show that a 
large class of other problems about the input/output behaviour of programs are 
undecidable. 

 
Examples of  undecidable problems

• About Turing machines: 

 Is the language accepted by a TM empty, finite, regular, or context-free? 

 Does a TM meet its “specification ? ,” that is, does it have any “bugs.” 
• About Context Free languages  

 Are two context-free grammars equivalent? 

 Is a context-free grammar ambiguous? 
 

Not so surprising, Although this result is sweeping in scope, maybe it is not too 
surprising. If a simple question such as whether a program halts or not is 
undecidable, why should one expect that any other property of the input/output 
behavior of programs is decidable? Rice’s theorem makes it clear that failure to 
decide halting implies failure to decide any other interesting question about the 
input/output behaviour of programs. Before we consider Rice’s theorem, we need to 
understand the concept of problem reduction on which its proof is based. 
Reducing problem B to problem A means finding a way to convert problem B to 
problem A, so that a solution to problem A can be used to solve problem B.  
 
One may ask, Why is this important? A reduction of problem B to problem A shows 
that problem A is at least as difficult to solve as problem B.Also, we can show the 
following: 

• To show that a problem A is undecidable, we reduce another problem that is 
known to be undecidable to A.  

• Having proved that the halting problem is undecidable, we use problem 
reduction to show that other problems are undecidable. 
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Example 1:  Totality Problem 

Decide whether an arbitrary TM halts on all inputs. (If it does, it computes a “total 
function”). This is equivalent to the problem of whether a program can ever enter an 
infinite loop, for any input. It differs from the halting problem, which asks whether it 
enters an infinite loop for a particular input. 

 
Proof:  We prove that the halting problem is reducible to the totality problem. That 
is, if an algorithm can solve the totality problem, it can be used to solve the halting 
problem. Since no algorithm can solve the halting problem, the totality problem 
must also be undecidable. 
 
The reduction is as follows. For any TM M and input w, we create another TM M1 
that takes an arbitrary input, ignores it, and runs M on w. Note that M1 halts on all 
inputs if and only if M halts on input w. Therefore, an algorithm that tells us whether 
M1 halts on all inputs also tells us whether M halts on input w, which would be a 
solution to the halting problem. 
 
Hence, The totality problem is undecidable. 
 
Example 2: Equivalence problem 

Decide whether two TMs accept the same language. This is equivalent to the 
problem of whether two programs compute the same output for every input. 
 
Proof:  We prove that the totality problem is reducible to the equivalence problem. 
That is, if an algorithm can solve the equivalence problem, it can be used to solve 
the totality problem. Since no algorithm can solve the totality problem, the 
equivalence problem must also be unsolvable. 
 
The reduction is as follows. For any TM M, we can construct a TM M1 that takes 
any input w, runs M on that input, and outputs “yes” if M halts on w. We can also 
construct a TM M2 that takes any input and simply outputs “yes.” If an algorithm can 
tell us whether M1 and M2 are equivalent, it can also tell us whether M1 halts on all 
inputs, which would be a solution to the totality problem. 
 
Hence, the equivalence problem is undecidable. 
 
Practical implications 

• The fact that the totality problem is undecidable means that we cannot write a 
program that can find any infinite loop in any program. 

• The fact that the equivalence problem is undecidable means that the code 
optimization phase of a compiler may improve a program, but can never 
guarantee finding the optimally efficient version of the program. There may be 
potentially improved versions of the program that it cannot even be sure are 
equivalent. 
 

 We now describe a more general way of showing that a problem is 
undecidable i.e., Rice’s theorem. First we introduce some definitions. 

• A property of a program (TM) can be viewed as the set of programs that have 
that property. 

• A functional (or non-trivial) property of a program (TM) is one that some 
programs have and some don’t. 

 
Rice’s theorem (proof  is not required) 

• “Any functional property of programs is undecidable.” 
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• A functional property is: 
 

 (i)  a property of the input/output behaviour of the program, that is, it 
describes     the mathematical function the program computes. 

 
(ii)  nontrivial, in the sense that it is a property of some programs but not all 

programs. 
 
Examples of functional properties 

• The language accepted by a TM contains at least two strings. 

• The language accepted by a TM is empty (contains no strings). 

• The language accepted by a TM contains two different strings of the same 
length. 

 
Rice’s theorem can be used to show that whether the language accepted by a Turing 
machine is context-free, regular, or even finite, are undecidable problems. 
Not all properties of programs are functional. 

 

1.5 UNDECIDABILITY OF POST 
CORRESPONDENCE PROBLEM  

Undecidable problems arise in language theory also. It is required to develop 
techniques for proving particular problems undecidable. In 1946, Emil Post proved 
that the following problem is undecidable:  
             
Let Σ be an alphabet, and let L and M be two lists of nonempty strings over Σ, such 
that L and M have the same number of strings. We can represent L and M as 
follows:  
                           
                           L = ( w1, w2, w3, ..., wk )  
                           M = ( v1, v2, v3, ..., vk )  
 
Does there exist a sequence of one or more integers, which we represent as ( i, j, k, 
..., m), that meet the following requirements:  

• Each of the integers is greater than or equal to one.  

• Each of the integers is less than or equal to k. (Recall that each list has k 
strings).  

• The concatenation of  wi, wj, wk, ..., wm is equal to the concatenation of  vi, vj, 
vk, ..., vm.  

 
If there exists the sequence (i, j, k, ..., m) satisfying above conditions then (i, j, k, ..., 
m) is a solution of PCP. 
 
Let us consider some examples.  
             
Example 3: Consider the following instance of the PCP:  
 
            Alphabet Σ = { a, b }  
            List L = (a, ab) 
            List M = (aa, b) 
 
We see that ( 1, 2 ) is a sequence of integers that solves this PCP instance, since the 
concatenation of a and ab is equal to the concatenation of aa and b (i.e w1 w2 = v1 v2  
= aab). other solutions include:  ( 1, 2, 1, 2 ) , ( 1, 2, 1, 2, 1, 2 ) and so on . 

12 



 Computability/ 
Decidability 

 
Example 4:  Consider the following instance of the PCP Alphabet Σ  = { 0, 1 }  
 

List L = ( 0, 01000, 01 )  
List M = ( 000, 01, 1 )  

 
A sequence of integers that solves this problem is ( 2, 1, 1, 3 ), since the 
concatenation of 01000, 0, 0 and 01 is equal to the concatenation of 01, 000, 000 and 
1 (i.e., w2 w1 w1 w3= v2 v1v1 v3  =010000001).  

                 

1.6  UNDECIDABLE PROBLEMS FOR 
CONTEXT–FREE LANGUAGES 

The Post correspondence problem is a convenient tool to study undecidable 
questions for context free languages. We illustrate this with an example. 
 
Theorem 1.2:  There exists no algorithm for deciding whether any given context-
free grammar is ambiguous. 
 
Proof :  Consider two sequences of strings A = (u1, u2, … , um) and B = (v1, v2, … , 
vm) over some alphabet ∑. Choose a new set of distinct symbols a1, a2, … , am, such 
that 

{a1, a2, … , am} ∩ ∑ = ∅, 
 
and consider the two languages  
 

LA = { uiuj, …  ul uk ak al … , aj ai} defined over A and {a1, a2, … , am} 
 
and 
 
LB = { vB ivj, …  vl vk ak al … , aj ai} defined over B and {a1, a2, … , am}. 

 
Let G be the context free grammar given by 
 

             ({S, SA , SB}, {aB 1, a2, … , am} ∪ ∑,  P, S) 
 
where the set of productions P is the union of the two subsets: the first set  PA 
consists of  

                                      
 S → SA, 

          SA →uiSAai | uiai,        i = 1, 2,…, n, 
 
the second set  PB consists of  B

                                             
        S → SB, B

SB →vB iSBBai | viai,        i = 1, 2,…, n. 
 
Now take 

 
GA = ({S, SA }, {a1, a2, … , am} ∪ ∑,  PA, S) 
 
 and  
 
GB = ({S, SB BB }, {a1, a2, … , am} ∪ ∑,  PB, S) B

 
Then, 

LA  = L(GA), 
LB  = L(GB BB), 
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and  
 
L (G) = LA ∪  LB. B

 
It is easy to see that GA and GB by themselves are unambiguous. If a given string in 
L

B

 (G) ends with ai, then its derivation with grammar GA must have started with S⇒ ui 
SA ai . Similarly, we can tell at any later stage which rule has to be applied. Thus, If 
G is ambiguous it must be because there is w for which there are two derivations 
 

S⇒ SA⇒ uiSai ⇒*  ui uj… ukak …ajai = w 
and 

 
S⇒ SB⇒ vB iSai ⇒   v*

i vj… vkak …ajai = w. 
 

Consequently, if G is ambiguous, then the Post correspondence problem with the 
pair (A, B) has a solution. Conversely, If G is unambiguous, then the Post 
correspondence problem cannot have solution. 
 
If there existed an algorithm for solving the ambiguity problem, we could adapt it to 
solve the Post correspondence problem. But, since there is no algorithm for the Post 
correspondence problem, we conclude that the ambiguity problem is undecidable. 
 

1.7 OTHER UNDECIDABLE PROBLEMS 

• Does a given Turing machine M halt on all inputs?  

• Does Turing machine M halt for any input? (That is, is L(M)=∅?)  

• Do two Turing machines M1 and M2 accept the same language?  

• Is the language L(M) finite?  

• Does L(M) contain any two strings of the same length?  

• Does L(M) contain a string of length k, for some given k?  

• If G is a unrestricted grammar. 

• Does L(G) = ∅ ? 

• Does L(G) infinite ? 

• If G is a context sensitive grammar.  

• Does L(G) = ∅ ? 

• Does L(G) infinite ? 

• If L1 and L2 are any context free languages over Σ. 

• Does L1 ∩ L2 = ∅ ? 

• Does L1 = L2  ? 

• Does L1 ⊆ L2 ? 

• If L is recursively enumerable language over Σ. 

• Does L empty ? 

• Does L  finite ? 
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Ex. 1)  Show that the state-entry problem is undecidable. 
 
Hint:  The problem is described as follows: Given any Turing machine M  = (Q, Σ, 

Τ, δ, q0, F) and any q ∈ Q, w∈ Σ+, to determine whether Turing machine M, 
when given input w, ever enters state q.  

 
Ex. 2)  Show that the blank tape halting problem is undecidable. 
 
Hint:  The problem is described as follows: Given a Turing machine M, Does 

Turing machine M halts when given a blank input tape?  
 

Ex. 3)   Consider the following instance of the PCP:  
 
 Alphabet  Σ = { 0, 1, 2 }  
  List L = ( 0, 1, 2 )  
  List M = ( 00, 11, 22 )  
  Does PCP have a solution ? 

           
 Ex. 4)  Consider the following instance of the PCP: 
 
  Alphabet  Σ = { a, b }  
  List L = ( ba, abb, bab )  
  List M = ( bab, bb, abb )  
  Does PCP have a solution ? 
 
Ex. 5)  Does PCP with two lists A = (b, babbb, ba) and B = (bbb, ba, a) have a 

solution ? 
 
Ex. 6)  Does PCP with two lists A = (ab, b, b) and (abb, ba, bb) have a solution ? 
 
Ex.7)  Show that  there does not exist algorithm for deciding whether or not  
 
 L (GA) ∩ L(GB) = ∅  for arbitrary context free grammars GB A  and GBB. 
 
 

1.8 SUMMARY  

• A decision problem is a problem that requires a yes or no answer. A decision 
problem that admits no algorithmic solution is said to be undecidable.  

 
• No undecidable problem can ever be solved by a computer or computer 

program of any kind. In particular, there is no Turing machine to solve an 
undecidable problem.  

• We have not said that undecidable means we don't know of a solution today 
but might find one tomorrow. It means we can never find an algorithm for the 
problem.  

 
• We can show no solution can exist for a problem A if we can reduce it into 

another problem B and problem B is undecidable.  
 

1.9  SOLUTIONS/ANSWERS 

Exercise 1  
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The problem is described as follows: Given any Turing machine M  = (Q, Σ, Τ, δ, q0, 
F) and any q ∈ Q, w∈ Σ+, to determine whether Turing machine M, when given 
input w, ever enters state q.  
 
The problem is to determine whether Turing machine M, when given input w, ever 
enters state q.  
 
The only way a Turing machine M halts is if it enters a state q for which some 
transition function δ(qi, ai) is undefined. Add a new final state Z to the Turing 
machine, and add all these missing transitions to lead to state Z.  
Now use the (assumed) state-entry procedure to test whether state Z is ever entered 
when M is given input w. This will reveal whether the original machine M halts. We 
conclude that it must not be possible to build the assumed state-entry procedure. 
 
Exercise 2 
 
It is another problem which is undecidable. The problem is described as follows: 
Given a Turing machine M, does Turing machine M halts when given a blank input 
tape?  
 
Here, we will reduce the blank tape halting problem to the halting problem. Given M 
and w, we first construct from M a new machine Mw that starts with a blank tape, 
writes w on it, then positions itself in configuration q0w. After that, Mw acts exactly 
like M. Hence, Mw will halt on a blank tape if and only if M halts on w. 
 
Suppose that the blank tape halting problem were decidable. Given any M and w, we 
first construct Mw, then apply the blank tape halting problem algorithm to it. The 
conclusion tells us whether M applied to w will halt. Since this can be done for any 
M and w, an algorithm for the blank tape halting problem can be converted into an 
algorithm for the halting problem. Since the halting problem is undecidable, the 
same must be true for the blank tape halting problem. 
 
Exercise 3 
 
There is no solution to this problem, since for any potential solution, the  
 
concatenation of the strings from list L will contain half as many letters as the 
concatenation of the corresponding strings from list M.  
     
Exercise 4 
 
We can not have string beginning with w2 = abb as the counterpart v2 = bb exists in 
another sequence and first character does not match. Similarly, no string can begin 
with  w3 = bab as the counterpart v3 = abb exists in another sequence and first 
character does not match. The next choice left with us is start the string with w1 = ba 
from L and the counterpart v1 = bab from M. So, we have 
 
              ba 
          
              bab 
 
The next choice from L must begin with b. Thus, either we choose w1 or w3 as their 
string starts with symbol b. But, the choice of w1 will make two string look like: 
          
               baba 
          
               babbab 
 
 While the choice of w3 direct to make choice of v3 and the string will look like: 
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               babab 
          
               bababb 
 
Since the string from list M again exceeds the string from list L by the single symbol 
1, a similar argument shows that we should pick up w3 from list L and v3 from list M. 
Thus, there is only one sequence of choices that generates compatible strings, and 
for this sequence string M is always one character longer. Thus, this instance of PCP 
has no solution. 
 
Exercise 5 
 
We see that ( 2, 1, 1, 3 ) is a sequence of integers that solves this PCP instance, since 
the concatenation of babbb, b, b and ba is equal to the concatenation of ba, bbb, bbb 
and a  (i.e., w2 w1 w1 w3 = v2 v1  v1 v3  = babbbbbba).  
 
Exercise 6 
             
For each string in A and corresponding string in B, the length of string of A is less 
than counterpart string of B for the same sequence number. Hence, the string 
generated by a sequence of strings from A ia shorter than the string generated by the 
sequence of corresponding strings of B. Therefore, the PCP has no solution. 
 
Exercise 7 
 
Proof : Consider two grammars 
 
GA = ({ SA }, {a1, a2, … , am} ∪ ∑,  PA, SA) 
 
and  
 
GB = ({S

  

B BB }, {a1, a2, … , am} ∪ ∑,  PB, SB BB). 
 
where the set of productions  PA consists of  
 SA →uiSAai | uiai,        i = 1, 2,…, n, 
 
and the set  of productions PB consists of  B

                                           
SB →vB iSBBai | viai,        i = 1, 2,…, n. 
 
where consider two sequences of strings A = (u1, u2, … , um) and B = (v1, v2, … , vm) 
over some alphabet ∑. Choose a new set of distinct symbols a1, a2, … , am, such that 
 
{a1, a2, … , am} ∩ ∑ = ∅, 
 
Suppose that L(GA) and L(GB) have a common element, i.e, B

 
SA⇒ uiSai ⇒*  ui uj… ukak …ajai  
 
and 
 
SB⇒ vB iSai ⇒   v*

i vj… vkak …ajai. 
 
Then the pair (A, B) has a PC-solution. Conversely, if   the pair does not have a PC- 
solution, then L(GA) and L(GB) cannot have a common element. We conclude that 
L(G

B

A) ∩ L(GBB) is nonempty if and only if (A, B) has a PC- solution. 
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