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2.0  INTRODUCTION 

In the previous unit, we introduced you to the fact that there are a large number of 
problems which cannot be solved by algorithmic means and discussed a number of 
issues about such problems. 
 
The advantage of such a study is our becoming aware of the fact that in stead of 
attempting to write an algorithm for every problem that we are required to solve using 
a computer, we should first study the essential nature of the problem.  In case the 
problem under consideration is not solvable by algorithmic means, we may adopt 
other computational techniques including use of heuristics, numerical and/or statistical 
techniques. Even out of problems, which though theoretically have algorithmic 
solutions, yet require such large amount of resources, that this type of problems are 
designated as infeasible for the purpose of computational solution. Out of the 
problems, which are feasibly solvable, there are problems each of which may have 
more than one algorithms to solve the problem. For us, it is desirable to know which 
one is better among the available ones. For example, we can use the algorithms viz, 
Bubble sort, Insertion sort, Heapsort and Quicksort, for sorting a list of numbers. 
Their designs are different but the outcome is the same for all, for a given list of 
numbers.  As, there are more than one algorithms available to us to sort a list of 
numbers, it is natural for us to think of using the algorithm which solves a particular 
sorting problem, in some way better than the others.  In context of practical 
disciplines like computer applications, an efficient solution is generally taken as a 
better solution. Efficiency of an algorithm can be considered in terms of the efficient 
use of computer resources, such as processor time and memory space used.   In 
addition to the efficiency of execution of algorithms, other factors like time (taken by 
a team of software engineers and/or programmers) required for developing algorithms 
and reliability may also be taken into consideration as factors towards overall 
efficiency of an algorithm. 

Meanwhile, we have 
actually succeeded  in 
making our discipline a 
science, and in a 
remarkably simple way: 
merely by deciding to 
call it “computer 
science”… 
 
…We have seen 
computer programming  
is an art, because it 
applies accumulated 
knowledge to the world, 
because it requires skill 
and ingenuity, and 
specially because it 
produces objects of 
beauty… 
 
         Donald E. Knuth 
                      in 
          Turing Award     
         Lecture   (1974) 

 
However, most of the time, in respect of efficiency of algorithms, we are only 
concerned with the time and space requirements of execution of algorithms.  
 
In this unit, we will discuss the issue of efficiency of computation of an algorithm in 
terms of  the amount of time used in its execution. On the basis of analysis of an 
algorithm, the amount of time that is estimated to be required in executing an 
algorithm, will be referred to as the time complexity of the algorithm. The time 
complexity of an algorithm is measured in terms of some (basic) time unit (not second 
or nano-second).  Generally, time taken in executing one move of a TM, is taken as 
(basic) time unit for the purpose. Or, alternatively, time taken in executing some 
elementary operation like addition, is taken as one unit. More complex operations like 
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multiplication etc, are assumed to require an integral number of  basic units. As 
mentioned earlier, given many algorithms (solutions) for solving a problem, we would 
like to choose the most efficient algorithm from amongst the available ones. For 
comparing efficiencies of algorithms, that solve a particular problem, time 
complexities of algorithms are considered as functions of the sizes of the problems (to 
be discussed).  The time complexity functions of the algorithms are compared in terms 
of their growth rates (to be defined) as growth rates are considered important measures 
of comparative efficiencies. 
 
The concept of the size of a problem, though a fundamental one, yet is difficult to 
define precisely.  Generally, the size of a problem, is measured in terms of the size of 
the input.  The concept of  the size of an input of a problem may be explained 
informally through examples.  In the case of multiplication of two nxn (squares) 
matrices, the size of the problem may be taken as n2, i.e, the number of elements in 
each matrix to be multiplied.  For problems involving polynomials, the degrees of the 
polynomials may be taken as measure of the sizes of the problems. 
 
Also, we may have an intuitive idea about the term growth rate and its significance 
in the comparative study of algorithms that can be  designed to solve problems. For 
the time being, in stead of attempting a formal definition, we illustrate the concept of 
growth rate of time complexity function of an algorithm and its significance through 
the following example.   
 
Let us consider two algorithms to solve a problem P, having time-complexities 
respectively as f1(n) = 1000n2 and f2(n) = 5n4, where size of the problem is assumed to 
be n.  Then  
 
f1 (n)  f2 (n)    for  n  14   and 
 
f1 (n)  f2 (n)    for n  15. 
 
Also, the increase in the ratio  (f2 (n)/f1 (n)) is faster than increase in n.  Thus, 
informally, growth rate of f2 (n) is more than the growth rate of f1 (n). In one sense, 
the algorithm having time complexity f2 (n) is inferior to the algorithm having time 
complexity f1(n) as growth rate of f2(n) is faster than that of f1 (n). 
 
A number of well-known notations for the formal treatment of the growth rate will be 
introduced later on within this section itself. 
 
For a problem, a solution with time complexity which can be expressed as  a 
polynomial of the size of the problem, is considered to have an  efficient solution. 
Unfortunately, not many problems that arise in practice, admit any efficient 
algorithms, as these problems can be solved, if at all, by only non-polynomial time 
algorithms. A problem which does not have any (known) polynomial time algorithm is 
called an intractable problem. 
 
At this stage, it is important to be aware of the following relevant facts 
 
(i) A non-polynomial function need not always be exponential:.  For example, 

the function f(n) = nlog2 n is neither polynomial function nor exponential 
function of n, but, somewhere between the two . 

 
(ii) The term solution in its general form: need not be an algorithm. If by tossing 

a coin, we get the correct answer to each instance of a problem, then the process 
of tossing the coin and getting answers constitutes a solution. But, the process is 
not an algorithm. Similarly, we solve problems based on heuristics, i.e, good 

 
 For details, refer Page 415, Introduction to Automata Theory, Languages, and Computation 

(Second Edition) by Hopcroft, Motwani &Ullman, Pearson Eduction Inc (2001). 
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Complexity guesses which, generally but not necessarily always, lead to solutions.  All such 
cases of solutions are not algorithms, or algorithmic solutions.  To be  more 
explicit, by an algorithmic solution A of a problem L (considered as a 
language) from a problem domain *, we mean that among other conditions, 
the following are satisfied: 

(a) A is a step-by-step method in which for each instance of the problem, 
there is a definite sequence of execution steps (not involving any guess 
work). 

 
(b) A terminates for each xε *, irrespective of whether x ε L or x L. 
 

In this sense of algorithmic solution, only a solution by a Deterministic TM is called 
an algorithm.  A solution by a Non-Deterministic TM may not be an algorithm. 
 
(iii) However, for every NTM solution, there is a Deterministic TM (DTM) solution 

of a problem.  Therefore, if there is an NTM solution of a problem, then there is 
an algorithmic solution of the problem.  However, the symmetry may end here. 

 
 The computational equivalence of Deterministic and Non-Deterministic TMs 

does not state or guarantee any equivalence in respect of requirement of 
resources like time and space by the Deterministic and Non-Deterministic 
models of TM, for solving a (solvable) problem. To be more precise, if a 
problem is solvable in polynomial-time by a Non-Deterministic Turing 
Machine, then it is, of course, guaranteed that there is a deterministic TM that 
solves the problem, but it is not guaranteed that there exists a Deterministic TM 
that solves the problem in polynomial time. Rather, this fact forms the basis 
for one of the deepest open questions of Mathematics, which is stated as 
‘whether P = NP?’(P and NP to be defined soon). 

 The question put in simpler language means: Is it possible to design a 
Deterministic TM to solve a problem in polynomial time, for which, a  

 Non-Deterministic TM that solves the problem in polynomial time, has already 
been designed? 

 
 We summarize the above discussion from the intractable problem’s 

definition onward.  Let us begin with definitions of the notions of P and NP. 
 
 P denotes the class of all problems, for each of which there is at least one 

known polynomial time Deterministic TM solving it.   
 
NP denotes the class of all problems, for each of which, there is at least one 
known Non-Deterministic polynomial time solution.  However, this solution 
may not be reducible to a polynomial time algorithm, i.e, to a polynomial time 
DTM. 

 
Thus starting with two distinct classes of problems, viz, tractable problems and 
intractable problems, we introduced two classes of problems called P and NP.  Some 
interesting relations known about these classes are: 

(i) P = set of tractable problems 
(ii) P  NP. 
 
(The relation (ii) above simply follows from the fact that every Deterministic TM is a special case 
of a  Non-Deterministic TM). 
 
However, it is not known whether P=NP or P  NP.  This forms the basis for the 
subject matter of the rest of the chapter.  As a first step, we introduce some notations 
to facilitate the discussion of the concept of computational complexity. 
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2.1  OBJECTIVES 

At the end of this unit, you should be able to: 

 explain the concepts of time complexity, size of a problem, growth rate of a 
function;  

 define and explain the well-known notations for growth rates of functions, viz 
O, , ,o, ; 

 explain criteria for classification of problems into undefincable defineable but 
not solvable, solvable but not feasible, P, NP, NP-hard and NP-Complete etc.; 

 define a number of problems which are known to be NP-complete problems; 
 explain polynomial-reduction as a technique of establishing problems as NP-

hard; 
 establish NP-completeness of a number of  problems. 

 

2.2 NOTATIONS FOR GROWTH RATES OF   
         FUNCTIONS   

2.2.1 The  Constant Factor in Complexity Measure 

The time required by a solution or an algorithm for solving a (solvable) problem, 
depends not only on the size of the problem/input and the number of operations that 
the algorithm/solution uses, but also on the hardware and software used to execute the 
solution.  However, the effect of change/improvement in hardware and software on 
the time required may be closely approximated by a constant. 
 
Suppose, a supercomputer executes instructions one million times faster than another 
computer.  Then irrespective of the size of a (solvable) problem and the solution used 
to solve it, the supercomputer solves the problem roughly million times faster than the 
computer, if  the same solution is used on both the machines to solve the problem.  
Thus we conclude that the time requirement for execution of a solution, changes 
roughly by a constant factor on change in hardware, software and environmental 
factors. 
 
An important consequence of the above discussion is that if the time taken by one 
machine in executing a solution of a problem is a polynomial (or exponential) 
function in the size of the problem, then time taken by every machine is a polynomial 
(or exponential) function respectively, in the size of the problem.  Thus, functions 
differing from each other by constant factors, when treated as time complexities 
should not be treated as different, i.e., should be treated as complexity-wise 
equivalent. 
 
2.2.2 Asymptotic Considerations 

Computers are generally used to solve problems involving complex solutions.  The 
complexity of solutions may be either because of the large number of involved 
computational steps and/or large size of input data.  The plausibility of the claim 
apparently follows from the fact that, when required, computers are used generally not 
to find the product of two 2x2 matrices but to find the product of two nxn matrices for 
large n running into hundreds or even thousands. 
 
Similarly, computers, when required, are generally used not to find roots of quadratic 
equations but for finding roots of complex equations including polynomial equations 
of degrees more than hundreds or sometimes even thousands. 
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The above discussion leads to the conclusion that when considering time complexities 
f1(n) and f2(n) of (computer) solutions of a problem of size n, we need to consider and 
compare the behaviors of the two functions only for large values of n.  If the relative 
behaviors of two functions for smaller values conflict with the relative behaviours for 
larger values, then we may ignore the conflicting behaviour for smaller values.  For 
example, if the earlier considered two functions 
 
   f1(n) = 1000 n2        and 
   f2(n) =  5n4 
 
represent time complexities of two solutions of a problem of size n, then despite the 
fact that 
   f1 (n)  f2 (n)        for n  14, 
 
we would still prefer the solution having f1 (n) as time complexity because 
 
   f1(n)  f2 (n)         for all n  15. 
 
This explains the reason for the presence of the phrase ‘n  k’ in the definitions 
of the various measures of complexities discussed below: 
 
2.2.3 Well Known Asymptotic Growth Rate Notations 

In the following we discuss some well-known growth rate notations.  These notations 
denote relations from functions to functions. 
 
For example, if functions 
 
f, g:  N→N        are given by 
 
f(n) = n2 – 5n     and  
 
g(n) = n2  
 
then  
 
O(f(n)) = g(n)      or                  O(n2 – 5n) = n2 
 
(the notation O to be defined soon). 
 
To be more precise, each of these notations is a mapping that associates a set of 
functions to each function.  For example, if f (n) is a polynomial of degree k then the 
set O (f (n)) includes all polynomials of degree less than or equal to k.  
 
The five well-known notations and how these are pronounced: 
 
(i) O (O (n2) is pronounced as ‘big-oh of n2’ or sometimes just as oh of n2) 
 
(ii)  (  (n2 ) is pronounced as ‘big-omega of n2 or sometimes just as  
  omega of n2’) 
 
(iii)  (  (n2) is pronounced as ‘theta of n2’) 
 
(iv) o (o (n2) is pronounced as ‘little-oh of n2’) 
 
(v)  (  (n2) is pronounced as ‘little- omega of n2’) 
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Remark 2.2.3.1 
 
In the discussion of any one of the five notations, generally two functions say f and g 
are involved. The functions have their domains and Codomains as N, the set of natural 
numbers, i.e,  
 
 f: N→N 
 g: N→N 
 
These functions may also be considered as having domain and codomain as R. 
 
Remark 2.2.3.2 
 
The purpose of these asymptotic growth rate notations and functions denoted by these 
notations, is to facilitate the recognition of essential character of a complexity 
function through some simpler functions delivered by these notations.  For example, a 
complexity function f(n) = 5004 n3 + 83 n2 + 19 n + 408, has essentially the same 
behaviour as that of g(n) = n3 as the problem size n becomes larger and larger.   But 
g(n) = n3 is much more comprehensible than the function f(n). Let us discuss the 
notations, starting with the notation O. 
 
2.2.4 The Notation O 

Provides asymptotic upper bound for a given function. Let f(x) and g(x) be two 
functions each from the set of natural numbers or set of positive real numbers to 
positive real numbers. 
 
Then f (x) is said to be O (g(x)) (pronounced as big-oh of g of x) if there exist two 
positive integer/real number Constants C and k     such that 
 f (x)  C g(x)     for all x  k                           (A) 
(The restriction of being positive on integers/reals is justified as all complexities are 
positive numbers) 
 
Example 2.2.4.1: For the function defined by 
 
     f(x) = 2x3 + 3x2 + 1  

    show that 
 

(i) f(x)  =  O (x3) 
(ii) f(x)  =  O (x4) 
(iii) x3     =  O (f(x)) 
(iv) x4       O (f(x)) 
(v)     f(x)     O  ( x2) 

 
Solutions    
 
Part (i) 
 
Consider 
 
 f(x) = 2x3 +3x2 +1 
         2x3 +3x3 +1  x3  = 6x3             for all x  1 
 
(by replacing each term xi by the highest degree term x3) 
 

  there exist   C = 6 and k = 1   such that 
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Complexity f(x)  C.  x3     for all x k 
 
Thus we have found the required constants C and k.  Hence f(x) is O(x3). 
 
Part (ii) 
 
As above, we can show that 
 
 f(x)  6   x4    for all x  1. 
 
However, we may also, by computing some values of f(x) and x4, find C and k as 
follows: 
 
 f(1) = 2+3+1 = 6  ; (1)4 = 1 
 f(2) = 2.23 + 3.22 + 1 = 29 ; (2)4 = 16 
 f(3) = 2.33 + 3.32 + 1 = 82 ; (3)4 = 81 
 
for C = 2      and  k = 3   we have 
f(x)  2. x4          for all x  k 
 
Hence      f(x)  is O(x4). 
 
Part (iii) 
 
for  C = 1    and k = 1   we get 
x3  C (2x3 + 3x2 +1)   for all x  k 
 
Part (iv) 
 
 We prove the result by contradiction. Let there exist positive constants C and k 
such that  
 
 x4  C (2x3 + 3x2 +1)  for all x  k 
 x4  C (2x3 +3x3+x3) = 6Cx3 for x k 
  x4  6 C x3   for all x  k. 
 
implying   x  6C     for all x  k 
But for x = max of { 6 C + 1, k}, the previous statement is not true.  
Hence the proof. 
 
Part (v) 
 
Again we establish the result by contradiction. 
Let O (2 x3+3x2+1) = x2 
Then for some positive numbers C and k  
2x3 + 3x2+1 C x2 for all x k, 
implying  
x3 C x2 for all x k (Q x3  2x3+3x2+1  for all x 1) 
implying 
x C for x  k 
Again for x = max  kC ,1
The last imaquality does not hold.  Hence the result. 
 
Example:  The big-oh notation can be used to estimate Sn, the sum of first n positive 
integers 
 
Hint: Sn=1+2+3+……….+n  n+n +…………+ n = n2 
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Therefore,  Sn = O (n2). 
 
 
Remark 2.2.4.2 
 
It can be easily seen that for given functions f(x) and g(x), if there exists one pair of C 
and k with f(x)  C.g (x)  for all x  k, then there exist infinitely many pairs (Ci, ki)  
which satisfy 
 
 f(x)  Ci g(x)                  for all x  ki. 
Because for any Ci  C and any ki  k, the above inequality is true., if f(x)  c.g(x) for 
all x  k. 
 
2.2.5.  The  Notation  

Provides an asymptolic lower bound for a given function. 
 
Let f(x) and g(x) be two functions, each from the set of natural numbers or set of 
positive real numbers to positive real numbers. 
 
Then f (x) is said to be  (g(x)) (pronounced as big-omega of g of x) if there exist two 
positive integer/real number Constants C and k     such that 
 
 f(x)  C (g(x))                 whenever x  k 
 
Example 2.2.5.1:  For the functions 
  f(x)  = 2x3 + 3x2 + 1 and h (x) = 2x3-3x2+2 
show that 
 
(i) f(x) =  (x3)   
(ii) h(x)=  (x3) 
 
(iii) h(x)=  (x2) 
 
(iv) x3 =  (h(x)) 
 
(v) x2   (h(x)) 
 
Solutions:  
 
Part (i)   
 
For C =1, we have 
f(x)  C x3   for all x  1 
 
Part (ii)   
 
h(x) = 2x3-3x2+2 
Let   C and k > 0  be such that 
2x3-3x2+2  C x3        for all x  k 
i.e (2-C) x3-3x2+2  0  for all x  k 
 
Then C = 1 and k  3 satisfy the last inequality. 
 
Part (iii)  
 
2x3-3x2+2 =  (x2) 
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Complexity Let the above equation be true. 
Then there exists positive numbers C and k  
s.t. 
 2x3-3x2+2  C x2      for all x  k 
 2 x3-(3 + C) x2 + 2  0 
 
It can be easily seen that lesser the value of C, better the chances of the above 
inequality being true.  So, to begin with, let us take C = 1 and try to find a value of k  
s.t 
 2x3-4x2+2  0. 
 
For x  2, the above inequality holds  

 k=2 is     such that 
 
 2x3-4x2+2  0 for all x  k 
 
Part (iv) 
 
Let the equality 
 x3 =  (2x3-3x2+2) 
be true.  Therefore, let C>0 and k > 0 be such that 
 x3  C(2(x3-3/2 x2 +1)) 
For C = ½ and k = 1, the above inequality is true. 
 
Part (v)  
 
We prove the result by contradiction. 
 
Let x2 =  (3x3-2x2+2) 
 
Then, there exist positive constants C and k such that 
  
x2  C (3x3 – 2x2 + 2)  for all x  k 
 
i.e (2C +1) x2  3C x3 + 2  C x3 for all x  k 
 

C
C 12

    x    for all x  k 

 

But for any x     2  
C

C )12(
, 

The above inequality can not hold.  Hence contradiction. 
 
2.2.6 The Notation  

Provides simultaneously both asymptotic lower bound and asymptotic upper bound 
for a given function. 
 
Let f(x) and g(x) be two functions, each from the set of natural numbers or positive 
real numbers to positive real numbers.  Then f(x) said to be  (g(x)) (pronounced as 
big-theta of g of x) if, there exist positive constants C1, C2 and k such that C2 g(x)  
f(x)  C1 g(x) for all x  k. 
 
(Note the last inequalities represent two conditions to be satisfied simultaneously viz 
C2 g(x)  f(x) and f(x)  C1 g(x)) 
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We state the following theorem without proof, which relates the three functions 
O, ,  
 
Theorem:  For any two functions f(x) and g(x), f(x) =   (g(x))   if and only if 
f(x) = O (g(x)) and f(x) =  (g(x)). 
Examples 2.2.6.1:     For the function 
   f(x) = 2 x3 + 3x2 + 1,    show that 
 
(i) f(x)  =   (x3) 
 
(ii) f(x)    (x2) 
 
(iii) f(x)    (x4) 
 
Solutions 
 
Part (i) 
 
for C1 = 3, C2 = 1 and k = 4 
 
1.   C2 x3  f(x)  C1 x3         for all x  k 
 
Part (ii)   
 
We can show by contradiction that no C1 exists.  
  
Let, if possible for some positive integers k and C1, we have 2x3+3x2+1 C1. x2 for all 
x k 
 Then  
 x3  C1 x2 for all x k 
 i.e, 
 x  C1 for all x k 
 But for 
 x= max C 1  k,1

 The last inequality is not true 
 
Part (iii) 
 
f(x)   (x4) 
 
We can show by contradiction that there does not exist C2 
s.t 
 

C2 x4   (2x3 + 3x2 + 1) 
 
If such a C2 exists for some k then C2 x4   2x3 + 3x2 + 1  6x3  for all x  k 1, 
 
implying  
 
 C2 x  6  for all x  k 

But for x = 16

2C
 

the above inequality is false.  Hence, proof of the claim by contradiction. 
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Complexity 2.2.7 The Notation o 

The asymptotic upper bound provided by big-oh notation may or may not be 
tight in the sense that if f(x) = 2x3 + 3x2 +1  
 
Then for f (x) = O (x3), though there exist C and k such that 
f(x)   C (x3)  for all x  k 
yet there may also be some values for which the following equality also holds 
 f(x) = C (x3)                               for  x  k 
 
However, if we consider 
 
f(x) = O (x4) 
 
then there can not exist positive integer C s.t 
 
 f (x) = C x4    for all x  k 
The case of f (x) = O (x4), provides an example for the next notation of small-oh. 
 
The Notation o 

Let f(x) and g(x) be two functions, each from the set of natural numbers or positive 
real numbers to positive real numbers  
 
Further, let C > 0 be any number, then f(x) = o(g(x)) (pronounced as little oh of g of 
x) if there exists natural number k satisfying 
 f(x) < C g(x)  for all x  k 1                                        (B) 
 
Here we may note the following points 

(i)     In the case of little-oh the constant C does not depend on the two functions f (x)     
        and g (x). Rather, we can arbitrarily choose C >0 
 
(ii)    The inequality (B) is strict whereas the inequality (A) of big-oh is not    
         necessarily strict. 
 
Example 2.2.7.1:  For f(x) = 2x3 + 3x2 + 1, we have   
   
(i)  f(x) = o (xn)     for any n  4. 
(ii)  f(x)  o(xn) for n  3 
 
Solution  
 
Let C > 0 be given and to find out k satisfying the requirement of little-oh. 
Consider 
 
2x3 + 3x2 + 1   <  C  xn 

=  2 + 3

13
xx

 < C x n-3 

 
Case  when n = 4 
Then above inequality becomes 
 

2 + 3

13
xx

 < C  x  
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C
 

then  
2x3 + 3x2 + 1   < C x4        for x  k. 
 
In general, as xn > x4 for n  4, 
 
therefore 
2x3 + 3x2 + 1   <  C  xn      for n  4 
      for all x  k 

      with k = max 1,7
c

 

Part (ii)  

We prove the result by contradiction. Let, if possible, f(x) = 0(xn) for n 3. 
 Then there exist positive constants C and k such that 2x3+3x2+1< C xn    

  for all x  k. 
  
Dividing by x3 throughout, we get 
   

2+ 2

13
xx

 < C xn-3  

n  3 and x  k 
As C is arbitrary, we take 
C = 1, then the above inequality reduces to 

2+ 2

13
xx

 < C. xn-3   for n  3 and x  k  1. 

 
Also, it can be easily seen that 

 
xn-3  1                for n  3 and x  k  1. 

 

 2+ 2

13
xx

  1                        for n  3 

However, the last inequality is not true.  Therefore, the proof by contradiction. 
 
Generalizing the above example, we get the  
 
Example 2.2.7.2:  If f(x) is a polynomial of degree m and g(x) is a polynomial of 
degree n.  Then  
 f(x) = o(g(x)) if and only if n>m. 
 
we state (without proof) below two results which can be useful in finding small-oh 
upper bound for a given function 
 
More generally, we have 
 
Theorem 2.2.7.3:  Let f(x) and g(x) be functions in definition of small-oh notation. 
 
Then f(x)  = o(g(x) if and only if 

 Lim     
)(
)(

xg
xf

 = 0 

 
 Lim x              
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Complexity Next, we introduce the last asymptotic notation, namely, small-omega.  The relation of 
small-omega to big-omega is similar to what is the relation of small-oh to big-oh. 
 
2.2.8 The Notation  

Again the asymptotic lower bound  may or may not be tight.  However, the 
asymptotic bound  cannot be tight.  The formal definition of  is follows: 
 
Let f(x)  and g(x) be two functions each from the set of natural numbers or the set of  
positive real numbers to set of positive real numbers. 
 
Further 
 
Let C > 0 be any number, then  
 f(x) =  (g(x)) 
if there exist a positive integer k s.t 
 
f(x) > C   g(x)       for all x  k 
 
Example 2.2.8.1:  If f(x) = 2x3 + 3x2 + 1 
      then 
  f(x) =  (x) 
      and also 
  f(x) =  (x2) 
 
Solution: 
 
Let C be any positive constant. 
 
Consider 
 

2x3 + 3x2 + 1 > C x 
 
To find out k  1 satisfying the conditions of the bound .  

 

2x2 + 3x + 
x
1

 > C  (dividing throughout by x) 

Let k be integer with k C+1 
 
Then for all x  k 
 

 2x2 + 3x + 
x
1

    2x2 + 3x >2k2 +3k > 2C2 +3C > C.  (Q k  C+1) 

 f(x) =  (x) 
 

Again, consider, for any C > 0, 
 
 2x3 + 3x2 + 1 > C x2 
then 

 2x + 3 + 2

1
x

 > C            Let k be integer with k  C+1 

Then for x  k we have 

 2x + 3 + 2

1
x

   2x + 3 > 2k + 3 > 2C + 3 >C 

Hence 
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 f(x) =  (x2) 
 
In general, we have the following two theorems (stated without proof). 
 
Theorem 2.2.8.2:  If f(x) is a polynomial of degree n, and g(x) is a polynomial of 
degree n, then  
 f(x) =  (g(x)) if and only if m > n. 
 
More generally 
Theorem 2.2.8.3:   Let f(x) and g(x) be functions in the definitions of little-omega  
Then f(x) =  g(x) if and only if 
 

0
)(
)(

)(
)(

xf
xg

x
Lim

or
xg
xf

x
Lim

 

 
Ex.1)       Show that n! = O(nn). 
 
Ex.2)       Show that n2 + 3logn = O(n2). 
 
Ex.3)       Show that 2n = O(5n). 
 

 

2.3 CLASSIFICATION OF PROBLEMS 
Where there are problems, 
there is life  
                          Zinaviev 
                 The Radiant Future. 

The fact of being engaged in solving problems may be the only sure indication of a 
living entity being alive (though, the distinction between entities being alive and not 
being alive is getting fuzzier day by day).  The problems, attempted to be solved, may 
be due to the need for survival in a hostile and competitive environment or may be 
because of intellectual curiosity of knowing more and more of the nature.  In the 
previous unit, we studied a number of problems which are not solvable by 
computational means.  We can go still further and categorize the problems, which 
we encounter or may encounter, into the following broad classes: 
 
(I) Problems which can not even be defined formally. 
 
By a formal definition of a problem, we mean expressing in terms of mathematical 
entities like sets, relations and functions etc , the information concerning the problem, 
in respect of at least  
 
 a) Possible inputs 
 b) Possible outcomes 
 c) Entitles occurring and operations on these entities in the (dynamic)  
  problem domains. 
 
In this sense of definition of a problem, what to talk of solving, most of the problems 
can not even be defined.  Think of the following problems 
 

a) Why the economy is not doing well? 
b) Why there is hunger, illiteracy and suffering despite international efforts 

to eradicate these? 
c) Why some people indulge in corrupt practices despite being economically 

well? 
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These are some of problems, the definition of each of which require enumeration of 
potentially infinite parameters, and hence are almost impossible to define. 
 
II Problems which can be formally defined but can not be solved by 

computational means. We discussed some of these problems in the previous 
unit. 

 
III Problems which, though theoretically can be solved by computational 

means, yet are infeasible, i.e, these problems require so large amount of 
computational resources that practically it is not feasible to solve these 
problems by computational means.  These problems are called intractable or 
infeasible problems.  The distinguishing feature of the problems is that for 
each of these problems any solution has time complexity which is 
exponential, Please or at least non-polynomial, function of the problem size. 

 
IV Problems that are called feasible or theoretically not difficult to solve by 

computational means.  The distinguishing feature of the problems is that for 
each instance of any of these problems, there exists a Deterministic Turing 
Machine that solves the problem having time-complexity as a polynomial 
function of the size of the problem.  The class of problem is denoted by P. 

 
V Last, but probably most interesting class include large number of 

problems, for each of which, it is not known whether it is in P or not in P.  
 These problems fall somewhere between class III and class IV given above 
 However, for each of the problems in the class, it is known that it is in NP, 

i.e. each can be solved by at least one Non-Deterministic Turing Machine, 
the time complexity of which is a polynomial function of the size of the 
problem.   

  
 A problem from the class NP can equivalently but in more intuitive way, be 

defined as one for which a potential solution, if given, can be verified in 
polynomial time whether the potential solution is actually a solution or not. 

 
The problems in this class, are called NP-Complete problems (to be formally defined 
later).  More explicitly, a problem is NP-complete if it is in NP and for which no 
polynomial-time Deterministic TM solution is known so far.  
 
Most interesting aspect of NP-complete problems, is that for each of these problems 
neither, so far,  it has been possible to design a Deterministic polynomial-time  TM 
solving the problem nor it has been possible to show that Deterministic polynomial -
time TM solution can not exist. 
 
The idea of NP-completeness was introduced by Stephen Cook  in 1971 and the 
satisfiablity problem defined below is the first problem that was proved to be NP-
complete, of course, by S. Cook.  
 
Next, we enumerate some of the NP-complete problems without justifying why 
these problems have been placed in the class.  Justification for some of these 
problems will be provided in later sections. 
 
A good source for the study of NP-complete problems and of related topics is Garey & 
Johnson+ 

 

 
* Cook S.A: The complexity of Theorem providing procedures, proceedings of the third annual ACM 
symposium on the Theory of computing, New York:  Association of Computing Machinery, 1971,  
pp. 151-158. 
+  Garey M.R. and Johnson D.S.  : Computers and Intractability:  A guide to the Theory of  
NP-Completeness, H.Freeman, New York, 1979. 
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Problem1:  Satisfiability problem (or, for short, SAT) states: Given a Boolean 
expression, is it satisfiable?  
  
Explanation: A Boolean expression involves  
 
(i) Boolean variables x1, x2,..., xi , …,each of which can assume a value either 

TRUE ( generally denoted by 1) or FALSE (generally denoted by 0) and  
 
(ii) Boolean/logical operations: NOT(x1 ) (generally denoted by xi or  xi), AND 

(denoted generally by ), and OR (denoted by ). Other logical operators 
like  and  can be equivalently replaced by some combinations of , and 
.   

 
(iii) Pair of parentheses 
 
(iv) A set of syntax rules, which are otherwise well known. 
 
For example  
 
((x1  x2)  x3) is (legal) Boolean expression. 
 
Next, we explain other concepts involved in SAT. 
 
Truth Assignment: For each of the variables involved in a given Boolean 
expression, associating a value of either 0 or 1, gives a truth assignment, which in turn 
gives a truth-value to the Boolean expression. 
 
For example: Let  x1= 0,  x2=1, and x3=1 be one of the eight possible assignments to 
a Boolean expression involving x1, x2 and x3  
Truth-value of a Boolean expression.  
 
Truth value of ( (x1 x2)  x3) for the truth–assignment x1=0, x2=1 and x3=1 is 
((0 1)  1) = (0 0) =0 
 
Satisfiable Boolean expression: A Boolean expression is said to be satisfiable if at 
least one truth assignment makes the Boolean expression True 
  
For example:    x1=1, x2=0 and x3= 0 is one assignment that makes the Boolean  

expression ((x1 x2)  x3) True.  Therefore, ((x1  x2)   x3) is 
satisfiable. 

 
Problem 2:  CSAT or CNFSAT Problem:  given a Boolean expression in CNF, is  
                      it satisfiable?    
 
Explanation: A Boolean formula FR is said to be in Conjunctive Normal Form (i.e., 
CNF) if it is expressed as C1 C2 …. Ck where each Ci is a disjunction of the 
form  
 

xi1  xi2  …   xim 
 
where each xij is a literal.  A literal is either a variable xi or negation xi     of variable xi. 
 
Each Ci is called a conjunct.  It can be easily shown that every logical expression can 
equivalently be expressed in CNF 
 
Problem 3:  Satisfiability (or for short, 3SAT) Problem: given a Boolean expression 
              in 3-CNF, is it satisfiable? 
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Complexity Further Explanation: If each conjunct in the CNF of a given Boolean expression 
contains exactly three distinct literals, then the CNF is called 3-CNF  
 
Problem 4: Primality problem: given a positive integer n, is n prime? 
 
Problem 5: Traveling salesman Problem (TSP) 
 
Given a set of cities C= {C1, C2, …. Cn} with n >1, and a function d which assigns to 
each pair of cities (Ci, Cj) some cost of traveling from Ci to Cj.  Further, a positive 
integer/real number B is given.  The problem is to find a route (covering each city 
exactly once) with cost at most B. 
 
Problem 6: Hamiltonian circuit problem (H C P): given an undirected graph  
  G = (V, E), does G contain a Hamiltonian circuit?   
 
Further Explanation: A Hamiltonian circuit of a graph G = (V, E) is a set of edges 
that connects the nodes into a single cycle, with each node appearing exactly once.  
We may note that the number of edges on a Hamiltonian circuit must equal the 
number of nodes in the graph. 
 
Further, it may be noted that HCP is a special case of TSP in which the cost between 
pairs of nodes is the same, say 1. 
 
Example: Consider the graph 
 
 
   
                        1                                    2    
 
 
    
 
  
                                                               
                        3                                     4 
Then the above graph has one Hamiltonian circuit viz (1, 2, 4, 3, 1) 
 
Problem 7:   The vertex cover problem (V C P) (also known as Node cover 

problem):  Given a graph G = (V,E) and an integer k, is there a 
vertex cover for G with k vertices? 

 
Explanation: A vertex cover for a graph G is a set C of vertices so that each edge of 

G has an endpoint in G.  For example, for the graph shown above,  
  {1, 2, 3} is a vertex cover.  It can be easily seen that every superset of 

a vertex cover  of a graph is also a vertex cover of the graph. 
 
Problem 8: K-Colourability Problem: Given a graph G and a positive integer 

k, is there a  k-colouring of G? 
 
Explanation: A k-colouring of G is an assignment to each vertex of one of the k 
colours so that no two adjacent vertices have the same color.  It may be recalled that 
two vertices in a graph are adjacent if there is an edge between the two vertices   
 
 
 
                        1                                       2 

                                          
  



 

   36

 

Complexity and 
Computability 

 
 
 
 
                       3                                       4 
As the vertices 1, 2, 3 are mutually adjacent therefore, we require at least three colours 
for k-colouring problem. 
 
Problem 9: The complete subgraph problem (CSP Complete Sub) or clique 

problem:  Given a graph G and positive integer k, does G have a 
complete subgraph with k vertices? 

 
Explanation: For a given graph G = (V, E), two vertices v1 and v2 are said to be 

adjacent if there is an edge connecting the two vertices in the graph.   
 

A subgraph H= (V1, E1) of a graph G = (V, E) is a graph such that V1 
 V and E1  E.  In other words, each vertex of the subgraph is a 

vertex of the graph  and each edge of the subgraph is an edge of the 
graph. 
 
Complete Subgraph of a given graph G is a subgraph in which 
every pair of vertices is adjacent in the graph  

 
For example in the above graph, the subgraph containing the vertices {1, 2, 3} 
and the edges (1, 2), (1, 3), (2, 3) is a complete subgraph or a clique of the graph.  
However, the whole graph is not a clique as there is no edge between vertices 1 and 4.    
 
Problem 10: Independent set problem: Given a graph G = (V, E) and a positive 
integer k, is there an independent set of vertices with at least k elements? 
 
Explanation: A subset V1 of the set of vertices V of graph G is said to be 
independent, if no two distinct vertices in V1 are adjacent.  For example, in the above 
graph V1 = {1, 4} is an independent set. 
 
Problem 11: The subgraph isomorphism problem:  Given graph G1 and G2, 

does G1 contain a copy of G2 as a subgraph? 
 
Explanation: Two graphs H1 = (V1, E1) and H2 = (V2, E2) are said to be isomorphic 
if we can rename the vertices in V2 in such a manner that after renaming, the graph H1 
and H2 look identical (not necessarily pictorially, but as ordered pairs of sets) 
 
For Example 
  
         1                 2                                          a                                d 
 
  
 
         3                  4                                                                           
                                                                        b                              c 
 
 
are isomorphic graph because after mapping 1 a, 2 b, 3 c and 4 d, the two 
graphs become identical. 
 
Problem 12: Given a graph g and a positive integer k, does G have an “edge 

cover” of k edges? 
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Complexity Explanation: For a given graph G = (V,E ), a subset E1 of the set of edges E of the 
graph, is said to be an edge cover of G, if every vertex is an end of at least one of the 
edges in E1. 
 
For Example, for the graph 
 
                                             1               2 
 
                       
                                   3                      4 
The two-edge set {(1, 4), (2, 3)} is an edge cover for the graph. 
 
Problem 13: Exact cover problem: For a given set P = {S1, S2, …, Sm}, where 

each Si is a subset of a given set S, is there a subset Q of P such 
that for each x in S, there is exactly one Si in Q for which x is in 
Si ? 

 
Example:  Let S = {1, 2, …,10}  
and P  = { S1, S2, S3, S4, S5}          s.t 
S1  =  {1, 3, 5}  
S2 =       {2, 4, 6}  
S3 =  {1, 2, 3, 4}  
S4 =  {5, 6, 7, 9, 10}  
S5 =  {7,  8, 9, 10 }  
Then Q = { S1, S2, S5} is a set cover for S.  
 
Problem 14:    The knapsack problem:  Given a list of k integers n1, n2… nk, can we 

partition these integers into two sets, such that sum of integers in each 
of the two sets is equal to the same integer? 

 

2.4 REDUCTION, NP-COMPLETE AND NP-HARD 
PROBLEMS 

Earlier we (informally) explained that a problem is called NP-Complete if P has at 
least one Non-Deterministic polynomial-time solution and further, so far, no 
polynomial-time Deterministic TM is known that solves the problem.  
  
In this section, we formally define the concept and then describe a general technique 
of establishing the NP-Completeness of problems and finally apply the technique to 
show some of the problems as NP-complete.  We have already explained how a 
problem can be thought of as a language L over some alphabet .  Thus the terms 
problem and language may be interchangeably used. 
 
For the formal definition of NP-completeness, polynomial-time reduction, as 
defined below, plays a very important role. 
 
In the previous unit, we discussed reduction technique to establish some of the 
problems as undecidable. The method that was used for establishing undecidability of 
a language using the technique of reduction, may be briefly described as follows: 
 
Let P1 be a problem which is already known to be undecidable.  We want to check 
whether a problem P2 is undecidable or not.  If we are able to design an algorithm 
which transforms or constructs an instance of P2 for each instance of P1, then P2 is also 
undecidable.   
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The process of transformation of the instances of the problem already known to the 
undecidable to instances of the problem, the undecidability is to checked, is called 
reduction. 
 
Some-what similar, but, slightly different, rather special, reduction called polynomial-
time reduction is used to establish NP-Completeness of problems.   
 
A Polynomial-time reduction is a polynomial-time algorithm which constructs the 
instances of a problem P2 from the instances of some other problems P1.  
 
A method of establishing the NP-Completeness (to be formally defined later) of a 
problem P2 constitutes of designing a polynomial time reduction that constructs 
an instance of P2 for each instance of P1, where P1 is already known to be  
NP-Complete. 
 
The direction of the mapping must be clearly understood as shown below. 
 

 Polynomial-time 
P1 P2  

   Reduction  
  

(Problem already known to be undecidable)   (Problem whose NP-Completeness 
 is to be established) 

 
Though we have already explained the concept of NP-Completeness, yet for the sake 
of completeness, we give below the formal definition of NP-Compleness 
 
Definition: NP-Complete Problem: A Problem P or equivalently its language L1 
is said to be NP-complete if the following two conditions are satisfied: 
 
(i) The problem L2 is in the class NP 
(ii) For any problem L2 in NP, there is a polynomial-time reduction of L1 to L2 
  
In this context, we introduce below another closely related and useful concept. 
 
Definition:   NP-Hard Problem A problem L is said to be NP-hard if for any 
problem L1 in NP, there is a polynomial-time reduction of L1 to L 
 
In other words, a problem L is hard if only condition (ii) of NP-Completeness is 
satisfied.  But the problem has may be so hard that establishing L as an NP-class 
problem is so far not possible. 
 
However, from the above definitions, it is clear that every NP-complete problem L 
must be NP-Hard and additionally should satisfy the condition that L is an NP-class 
problem. 
 
In the next section, we discuss NP-completeness of some of problems discussed in the 
previous section. 
 

2.5 ESTABLISHING NP-COMPLETENESS OF 
PROBLEMS 

In general, the process of establishing a problem as NP-Complete is a two-step 
process.   The first step, which in most of the cases is quite simple, constitutes of 
guessing possible solutions of the instances, one instance at a time, of the problem 
and then verifying whether the guess actually is a solution or not. 
 



 

 39 

 

Complexity The second step involves designing a polynomial-time algorithem which reduces 
instances of an already known NP-Complete problem to instances of the problem, 
which is intended to be shown as NP-Complete. 
 
However, to begin with, there is a major hurdle in execution of the second step.  The 
above technique of reduction can not be applied unless we already have established at 
least one problem as NP-Complete.  Therefore, for the first NP-Complete problem, the 
NP-Completeness has to be established in a different manner. 
 
As mentioned earlier, Stephen Cook (1971) established Satisfiablity as the first  
NP-Complete problem.  The proof was based on explicit reduction of the language of 
any non-deterministic, polynomial-time TM to the satisfiablity problem. 
 
The proof of Satisfiablity problem as the first NP-Complete problem, is quite lengthy 
and we skip the proof.  Interested readers may consult any of the text given in the 
reference. 
 
Assuming the satisfiablity problem as NP-complete, the rest of the problems that we  
establish as NP-complete, are established by reduction method as explained above. 
 
A diagrammatic notation of the form 
  
 P

  Q 

 
 
 
 
 
indicates:   Assuming P is already established as NP-Complete, the NP-Completeness 
of Q is established by through a polynomial-time reduction from P to Q  
 
A scheme for establishing NP-Completeness of some the problems mentioned in 
Section 2.2, is suggested by Fig. 2.1 given below 
 
 
 
 
 
 
 
 
 
 
 
Clique 
Problem 
 
 
 
 
 
 
 
 

  
 
 
 
 
 

3-CNF-SAT 

SAT

Subset -Sum 

Vertex Cover 

Hamiltonian Cycle 

Travelling Salesman 

Fig. 2.1 
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Example 2.4.1:  Show  that  the Clique problem is an NP-complete problem. 
 
Proof :  The verification of whether every pairs of vertices is connected by an edge in 
E, is done for different paris of vertices by a Non-deterministic TM, i.e, in parallel.  
Hence, it takes only polynomial time because for each of n vertices we need to verify 
at most n (n+1) /2 edges, the maximum number of edges in a graph with n vertices.    
 
We next show that 3- CNF-SAT problem can be transformed to clique problem in 
polynomial time. 
Take an instance of 3-CNF-SAT. An instance of 3CNF-SAT consists of a set of n 
clauses, each consisting of exactly 3 literals, each being either a variable or negated 
variable. It is satisfiable if we can choose literals in such a way that:  

 at least one literal from each clause is chosen  
 if literal of form x is chosen, no literal of form x is considered. 

 

 

 

 

 

 

 

 

 

 

   

 

                        x1                     x2                             x3 

                                                  
          
 
 
 

x1                                                                                             
 

 x1  
 

x 2

 
                                                                                         

 
  x 

2     
 

x 3

 
                                                                                        

 
 x

Fig. 2.2 

For each of the literals, create a graph node, and connect each node to every node in 
other clauses, except those with the same variable but different sign. This graph can 
be easily computed from a boolean formula  in 3-CNF-SAT in polynomial time. 
Consider an example, if we have 
 

 = ( x1 V x2 V x3 )  ( x1 V x2 V x3 )  ( x1 V x2 V x3 )  

then G is the graph shown in Figure 2.2 above. 
 
In the given example, a satisfying assignment of   is ( x1 = 0, x2 = 0, x3 = 1). A 
corresponding clique of size k = 3 consists of the vertices corresponding to x2 from 
the first clause, x3 from the second clause, and x3 from the third clause. 
 
The problem of finding n-element clique is equivalent to finding a set of literals 
satisfying SAT. Because there are no edges between literals of the same clause, such 
a clique must contain exactly one literal from each clause. And because there are no 
edges between literals of the same variable but different sign, if node of literal x is in 
the clique, no node of literal of form  x is.  
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This proves that finding n-element clique in 3n-element graph is NP-Complete.  

 
Example 5: Show  that  the Vertex cover problem is an NP- complete. 
 
A vertex cover of an undirected graphG = (V,E) is a subset V' of the vertices of the 
graph which contains at least one of the two endpoints of each edge.  
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                           Fig. 2.3  Fig. 2.4 

The vertex cover problem is the optimization problem of finding a vertex cover of 
minimum size in a graph. The problem can also be stated as a decision problem : 
 
VERTEX-COVER = {<G, k>| graph G has a vertex cover of size k }. 
 
A deterministic algorithm to find a vertex cover in a graph is to list all subsets of 
vertices of size k and check each one to see whether it forms a vertex cover. This 
algorithm is exponential in k.  
 
Proof : To show that Vertex cover problem  NP, for a given graph G = (V, E), we 
take  V’  V  and verifies to see if it forms a vertex cover. Verification can be done 
by checking for each edge (u, v)  E whether u  V’ or v  V’. This verification can 
be done in polynomial time. 

 
Now, We show that clique problem can be transformed to vertex cover problem in 
polynomial time. This transformation is based on the notion of the complement of a 
graph G. Given an undirected graph G = (V, E), we define the complement of G as 
G’ = (V, E’), where E’ = { (u, v) | (u, v)  E}. i.e G’ is the graph containing exactly 
those edges that are not in G. The transformation takes a graph G and k of the clique 
problem. It computes the complement G’ which can be done in polynomial time.  
 
To complete the proof, we can show that this transformation is indeed reduction : the 
graph has a clique of size k if and only if the graph G’ has a vertex cover of size 
|V| - k.   
 
Suppose that G has a clique V’  V  with |V’| = k. We claim that V – V’ is a vertex 
cover in G’. Let (u, v) be any edge in E’. Then, (u, v)  E, which implies that atleast 
one of u or v does not belong to V’, since every pair of vertices in V’ is connected by 
an edge of E. Equivalently, atleast one of u or v is in V – V’, which means that edge 
(u, v) is covered by V – V’. Since (u, v) was chosen arbitrarily from E’, every edge of 
E’ is covered by a vertex in V – V’. Hence, the set V – V’, which has size   |V| - k, 
forms a vertex cover for G’. 

 
Conversely, suppose that G’ has a vertex cover V’  V  , where |V’| = |V| - k. Then, 
for all u, v  V, if (u, v)  E’, then u  V’ or v  V’ or both. The contrapositive of 
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this implication is that for all u, v   V, if u  V’ and v  V’, then (u, v)  E. In 
other words, V – V’ is a clique, and it has size  |V| - |V’| =  k. 
 
For example, The graph G(V,E) has a clique {A, B, E} given by Figure 7.4. The 
complement of graph G is given by G’ shown as Figure 7.5 and have independent set 
given by {C, D, F}. 
 
This proves that finding the vertex cover  is NP-Complete.  
 
 
Ex.4)       Show that  the Partition problem is NP. 
 
Ex.5)       Show  that  the k-colorability problem is NP. 
 
Ex.6)       Show  that  the Independent Set problem is NP- complete. 
 
Ex.7)       Show  that  the Travelling salesman problem is NP- complete. 
 

2.6  SUMMARY 

In this unit in number of concepts are defined. 
 
P denotes the class of all problems, for each of which there is at least one known 
polynomial time Deterministic TM solving it.   

 
NP denotes the class of all problems, for each of which, there is at least one known 
Non-Deterministic polynomial time solution.  However, this solution may not be 
reducible to a polynomial time algorithm, i.e, to a polynomial time DTM. 
 
Next, five Well Known Asymptotic Growth Rate Notations are defined. 
 
The notation O provides asymptotic upper bound for a given function.  
Let f(x) and g(x) be two functions each from the set of natural numbers or set of 
positive real numbers to positive real numbers. 
 
Then f (x) is said to be O (g(x)) (pronounced as big-oh of g of x) if there exist two 
positive integer/real number Constants C and k  such that 
 f (x)  C g(x)     for all x  k                        
 
The  notation provides an asymptolic lower bound for a given function 
 
Let f(x) and g(x) be two functions, each from the set of natural numbers or set of 
positive real numbers to positive real numbers. 
 
Then f (x) is said to be  (g(x)) (pronounced as big-omega of g of x) if there exist two 
positive integer/real number Constants C and k     such that 
 f(x)  C (g(x))                 whenever x  k 
 
The Notation  

Provides simultaneously both asymptotic lower bound and asymptotic upper bound 
for a given function. 
 
Let f(x) and g(x) be two functions, each from the set of natural numbers or positive 
real numbers to positive real numbers.  Then f(x) said to be  (g(x)) (pronounced as 
big-theta of g of x) if, there exist positive constants C1, C2 and k such that C2 g(x)  
f(x)  C1 g(x) for all x  k. 
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The Notation o 
 
Let f(x) and g(x) be two functions, each from the set of natural numbers or positive 
real numbers to positive real numbers  
 
Further, let C > 0 be any number, then f(x) = o(g(x)) (pronounced as little oh of g of 
x) if there exists natural number k satisfying 
 f(x) < C g(x)  for all x  k 1                                     
 
 
The Notation  
 
Again the asymptotic lower bound  may or may not be tight.  However, the 
asymptotic bound  cannot be tight.  The formal definition of  is follows: 
 
Let f(x)  and g(x) be two functions each from the set of natural numbers or the set of  
positive real numbers to set of positive real numbers. 
Further 
 
Let C > 0 be any number, then  
 f(x) =  (g(x)) 
if there exist a positive integer k s.t 
 
f(x) > C   g(x)       for all x  k 
 
In Section 2.2 in defined, 14 well known problems, which are known to be NP-
Complete.   
 
In Section 2.3 we defined the following concepts. 
 
A Polynomial-time reduction is a polynomial-time algorithm which constructs the 
instances of a problem P2 from the instances of some other problems P1 
 
Definition: NP-Complete Problem: A Problem P or equivalently its language L1 
is said to be NP-complete if the following two conditions are satisfied: 
 
(i) The problem L2 is in the class NP 
(ii) For any problem L2 in NP, there is a polynomial-time reduction of L1 to L2 
 
Definition:   NP-Hard Problem A problem L is said to be NP-hard if for any 
problem L1 in NP, there is a polynomial-time reduction of L1 to L 
 
Finally in Section 2.4, we discussed how some of the problems defined in Section 2.2 
are established as NP-Complete. 
 

2.7   SOLUTIONS/ANSWERS 

Exercise 1:   n!/nn = (n/n) ((n-1)/n) ((n-2)/n) ((n-3)/n)…(2/n)(1/n) 
                      = 1(1-(1/n)) (1-(2/n)) (1-(3/n))…(2/n)(1/n) 
 
Each factor on the right hand side is less than equal to 1 for all value of n. Hence, The 
right hand side expression is always less than one. 
 
Therefore, n!/nn   1 
or,           n!  nn   
Therefore,  ,           n! =O( nn)   
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Exercise 2: For large value of n, 3logn < < n2  

                                 Therfore, 3logn/ n2< < 1 

                                 (n2 + 3logn)/ n2 =1 + 3logn/ n2  

                      or, (n2 + 3logn)/ n2  <2 

                      or, n2 + 3logn = O(n2). 

Exercise 3 :   We have, 2n/5n  < 1 
           or, 2n  <5n   
           Therefore, 2n = O(5n). 

 
Exercise 4 :    Given a set of integers, we have to divide the set in to two disjoint sets 
such that their sum value is equal . 

 
A deterministic algorithm to find two disjoint sets  is to list all possible combination 
of two subsets such that one set contain k elements and other contains remaining 
(n-k) elements. Then to check if the sum of elements of one set is equal to the sum of 
elments of another set. Here, the possible number of combination is C(n, k). This 
algorithm is exponential in n.  
 
To show that the partition problem  NP, for a given set S, we take  S1  S, S2  S 
and S1  S2 =  and verify to see if the sum of all elements of set S1 is equal to the 
sum of all elements of set S2. This verification can be done in polynomial time. 
Hence, the partition problem is NP. 

 
Exercise 5 :  The graph coloring problem is to detemine the minimum number of 
colors needed to color given graph G(V, E) vertices such that no two adjacent vetices 
has the same color.  A deterministic algorithm for this requires exponential time. 
 
If we cast the graph–coloring problem as a decision problem i.e. Can we color the 
graph G with k-colors such that no two adjacent vertices have same color ? We can 
verify that if this is possible then it is possible in polynomial time. 
 
Hence, The graph –coloring problem is NP. 
 
Exercise 6 :   An independent set is defined as a subset of a vertices in a graph such 
that no two vertices are adjacent.  

 
The independent set problem is the optimization problem of finding an independent 
set of maximum size in a graph. The problem can also be stated as a decision 
problem : 
 
INDEPENDENT-SET = {<G, k>| G has an independent set of atleast size k }. 
 
A deterministic algorithm to find an independent set in a graph is to list all subsets of 
vertices of size k and check each one to see whether it forms an independent set. This 
algorithm is exponential in k.  

 
Proof :  To show that the independent set problem  NP, for a given graph  
G = (V, E), we take  V’  V  and verifies to see if it forms an independent set. 
Verification can be done by checking for u  V’ and v  V’, does (u,v)  E . This 
verification can be done in polynomial time. 
 
Now, We show that clique problem can be transformed to independent set  problem 
in polynomial time.The transformation is similar clique to vertex cover. This 
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Complexity transformation is based on the notion of the complement of a graph G. Given an 
undirected graph G = (V, E), we define the complement of G as G’ = (V, E’), where 
E’ = { (u, v) | (u, v)  E}. i.e G’ is the graph containing exactly those edges that are 
not in G. The transformation takes a graph G and k of the clique problem. It 
computes the complement G’ which can be done in polynomial time.  
To complete the proof, we can show that this transformation is indeed reduction : the 
graph has a clique of size k if and only if the graph G’ has an independent set  of size 
|V| - k.   
 
Suppose that G has a clique V’  V  with |V’| = k. We claim that V – V’ is an 
independent set  in G’. Let (u, v) be any edge in E’. Then, (u, v)  E, which implies 
that atleast one of u or v does not belong to V’, since every pair of vertices in V’ is 
connected by an edge of E. Equivalently, atleast one of u or v is in V – V’, which 
means that edge (u, v) is covered by V – V’. Since (u, v) was chosen arbitrarily from 
E’, every edge of E’ is covered by a vertex in V – V’. So, either u or v is in V – V’ 
and no two adjacent vertices are in V – V’. Hence, the set V – V’, which has size   |V| 
- k, forms an independent set for G’. 
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                                      Fig. 2.5                                                                    Fig. 2.6 
 

For example, The graph G(V,E) has a clique {A, B, C, D} given by Figure 2.5. The 
complement of graph G is given by G’ shown as Figure 2.6 and have independent set 
given by {E F} 
             
This transformation can be performed in polynomial time. This proves that finding 
the independent set problem is NP-Complete.  
             
Exercise 7  
 
Proof : To show that travelling salesman problem  NP, we show that verification of 
the problem can be done in polynomial time. Given a constant M and a closed circuit 
path of a weighted graph G = (V, E) . Does such path exists in graph G and total 
weight of such path is less than M ?, Verification can be done by checking, does (u,v) 

 E and the sum of weights of these edges is less than M. This verification can be 
done in polynomial time. 

 
Now, We show that Hamiltonian circuit problem can be transformed to travelling  
problem in polynomial time. It can be shown that , Hamiltonian circuit problem is a 
special case of the travelling salesman problem. Towards this goal, given any Graph 
G(V, E), we construct an instance of the |V|-city Travelling salesman by letting dij = 1 
if (vi, vj)  E, and 2 otherwise. We let the cost of travel M equal to |V|. It is 
immediate that there is a tour of length M or less if and only if there exists a 
Hamiltonian circuit in G.  
Hence, The travelling salesman is NP-complete. 
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