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i Outline

s Stochastic Process
= Markov Chain



Stochastic Process

= A stochastic process is a indexed collection of random variables
X3 = { Xy, Xy, X,, ... } for describing the behavior of a system
operating over some period of time.

= For example :
= X,=3,X=2,%=1,X%=0,X,=3X=1



Stochastic Process (cont.)

= An inventory example:

= A camera store stocks a particular model camera.

= D, represents the demand for this camera during week t.

= D, has a Poisson distribution with a mean of 1.

= X, represents the number of cameras on hand at the end of
week t. (X, = 3)

= If there are no cameras in stock on Saturday night, the store
orders three cameras.

= { X, } is a stochastic process.

s Xyg=max{3-D4,;,0} ifX,=0

max{ X;- D1, 0} ifX, 20



Markov Chain

= A stochastic process {X;} is a Markov chain if it has Markovian
property.

= Markovian property:
s P{ X1 =11 Xy=Kg Xy =Kyqy iy Xy = K, Xi =1}
=P{ X1 =11 X =1}

= P{ X1 =]|X,=1}Iis called the transition probability.



Markov Chain (con.)

= Stationary transition probability:
= If foreachiand j, P{ X, =] | X =i1}=P{X;=]]|X,=11}, for
all t, then the transition probability are said to be stationary.



Markov Chain (con.)

= Formulating the inventory example:

= Jransition matrix:

P

state O

0 Poo
1 Py
2 Pay

3 P

Poz
P11
Pog

P31

Poz
Pi>
P2

P32

Poz
P13
P23

P33



Markov Chain (con.)

s X,,=max{3-D,;,0} ifX, =0
max{ X;- D1, 0} ifX, 21
state O 1 2 3

= Pz = P{ Dy, =0} =0.368 o 0.080 0.184 0.368 0.368
= Py, =P{D,,=1}=0.368

= pu=P{D,,=2}=0184 P= 1
= Pgo=P{D; =3}=0.080 2 0.264 0.368 0.368 0.000

0.632 0.368 0.000 0.000

3 0.080 0.184 0.368 0.368



Markov Chain (con.)

= The state transition diagram:

(.368

3
0.368



Markov Chain (con.)

= N-step transition probability :
- pij(n):P{Xt+n:j I Xt:i}

= N-step transition matrix :

state O 1 M
0 P 00('7) P 01(’7) P OM( )
ph = 1 P Py o Py

M P, P, . Py



Markov Chain (con.)

= Chapman-Kolmogorove Equation :

foralli=0,1, ..., M
n m n m ) ) ) )
() E p() ( ) i=0,1, .., M,
andanym=1, 2, ..., n-1,
n=m+1, m+2, ...

= The special cases of m = 1 leads to :

(n) (1) (n—l)
Z o

= Thus the n-step transition probability can be obtained from one-
step transition probability recursively.

for all i and j



Markov Chain (con.)

= Conclusion :
= PM=PpP0D =pPPP0Od = =pn

= N-step transition matrix for the inventory example :

state O 1 2 3 state O 1 2 3
o 0.080 0.184 0.368 0.368 o 0.289 0.286 0.261 0.164
P= 1 0.632 0.368 0.000 0.000 p(4) — 1 0.282 0.285 0.268 0.166
2 0.264 0.368 0.368 0.000 2 0.284 0.283 0.263 0.171

3 0.080 0.184 0.368 0.368 3 0.289 0.286 0.261 0.164



Markov Chain (con.)

= What is the probability that the camera store will have three
cameras on hand 4 weeks after the inventory system began ?

= P{X =i} =P{X = 0p® +P{X=1}py®+..
+ P{ X = M} py®

s P{X;=3}=P{Xy=03}pps™® +P{X;=1}py®¥
+ P{ Xy =2} pyz® + P{ Xy =37} ps?
= (1) ps;@ = 0.164



Markov Chain (con.)

= Long-Run Properties of Markov Chain
= Steady-State Probability

state O 1 2 3 state O 1 2 3
o 0.080 0.184 0.368 0.368 o 0.286 0.285 0.264 0.166
P= 1 0.632 0.368 0.000 0.000 p(8) — 1 0.286 0.285 0.264 0.166
2 0.264 0.368 0.368 0.000 2 0.286 0.285 0.264 0.166

3 0.080 0.184 0.368 0.368 3 0.286 0.285 0.264 0.166



Markov Chain (con.)

= The steady-state probability implies that there is a limiting
probability that the system will be in each state j after a large
number of transitions, and that this probability is independent of
the initial state.

= Not all Markov chains have this property.

state O 1 2 3
0 To T %) T3
1 T T T, T3
2 T T, (o T3



Markov Chain (con.)

= Steady-State Equations :

M
T = Z”i P; fori=0,1,..,M
i—0

M
Zﬂj =1

1=0

= , which consists of M+2 equations in M+1 unknowns.



Markov Chain (con.)

= The inventory example :

m Ty = ToPoo + T P1g + P20 + T3P30
m T = ToPo1 + P11 F TPy + T3P
= T = ToPo2 + T P1o F MHPon + T3P3;

T3 = TPz T TPz T MPr3 + T3P33

= 7, = 0.080m, + 0.632n, + 0.264n, + 0.080x, ,
= 7, = 0.184m, + 0.368n, + 0.368m, + 0.184x, ,

= 7, =0.368m, + + 0.368n, + 0.368m, ,
= 7, =0.368m, + + + 0.368m;, ,
u = 7n, + m + 1w, + m,.

= 7, =0.286, 1, = 0.285, 1, = 0.263, 1, = 0.166



Reference
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= THANK YOU
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