

BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA

Lecture Notes

On

Markov Chain

Part 1

Prepared by, Dr. Subhendu Kumar Rath, BPUT, Odisha.

Markov Chain Part 1

Dr. Subhendu Kumar Rath Deputy Registrar, BPUT

- Stochastic Process
- Markov Chain

Stochastic Process

- A stochastic process is a indexed collection of random variables
 {X_t} = { X₀, X₁, X₂, ... } for describing the behavior of a system
 operating over some period of time.
- For example :

•
$$X_0 = 3$$
, $X_1 = 2$, $X_2 = 1$, $X_3 = 0$, $X_4 = 3$, $X_5 = 1$

Stochastic Process (cont.)

- An inventory example:
- A camera store stocks a particular model camera.
- D_t represents the demand for this camera during week t.
- D_t has a Poisson distribution with a mean of 1.
- X_t represents the number of cameras on hand at the end of week t. (X₀ = 3)
- If there are no cameras in stock on Saturday night, the store orders three cameras.
- { X_t } is a stochastic process.

■
$$X_{t+1} = \max\{ 3 - D_{t+1}, 0 \}$$
 if $X_t = 0$
max{ $X_t - D_{t+1}, 0 \}$ if $X_t \ge 0$

Markov Chain

- A stochastic process {X_t} is a Markov chain if it has Markovian property.
- Markovian property:

• P{
$$X_{t+1} = j | X_0 = k_0, X_1 = k_1, ..., X_{t-1} = k_{t-1}, X_t = i$$
}
= P{ $X_{t+1} = j | X_t = i$ }

• P{ $X_{t+1} = j | X_t = i$ } is called the transition probability.

- Stationary transition probability:
 - If ,for each i and j, P{ X_{t+1} = j | X_t = i } = P{ X₁ = j | X₀ = i }, for all t, then the transition probability are said to be stationary.

- Formulating the inventory example:
 - Transition matrix:

state 0 1 2 3
0
$$\rho_{00}$$
 ρ_{01} ρ_{02} ρ_{03}
 $\mathbf{P} = 1 \rho_{10} \rho_{11} \rho_{12} \rho_{13}$
2 $\rho_{20} \rho_{21} \rho_{22} \rho_{23}$
3 $\rho_{30} \rho_{31} \rho_{32} \rho_{33}$

■
$$X_{t+1} = \max\{ 3 - D_{t+1}, 0 \}$$
 if $X_t = 0$
max{ $X_t - D_{t+1}, 0 \}$ if $X_t \ge 1$

•
$$p_{03} = P\{ D_{t+1} = 0 \} = 0.368$$

•
$$p_{02} = P\{ D_{t+1} = 1 \} = 0.368$$

•
$$p_{01} = P\{ D_{t+1} = 2 \} = 0.184$$

•
$$p_{00} = P\{ D_{t+1} \ge 3 \} = 0.080$$

state 0 1 2 3

 $0 \quad 0.080 \ 0.184 \ 0.368 \ 0.368$

P =

- 2 0.264 0.368 0.368 0.000
- 3 0.080 0.184 0.368 0.368

• The state transition diagram:

n-step transition probability :

•
$$p_{ij}^{(n)} = P\{ X_{t+n} = j | X_t = i \}$$

• n-step transition matrix :

• Chapman-Kolmogorove Equation :

$$p_{ij}^{(n)} = \sum_{k=0}^{M} p_{ik}^{(m)} p_{kj}^{(n-m)} \qquad \begin{array}{l} \text{for all } i = 0, 1, \dots, M, \\ j = 0, 1, \dots, M, \\ \text{and any } m = 1, 2, \dots, n-1, \\ n = m+1, m+2, \dots \end{array}$$

The special cases of m = 1 leads to :

$$p_{ij}^{(n)} = \sum_{k=0}^{M} p_{ik}^{(1)} p_{kj}^{(n-1)}$$
 for all i and j

 Thus the n-step transition probability can be obtained from onestep transition probability recursively.

- Conclusion :
 - $P^{(n)} = PP^{(n-1)} = PPP^{(n-2)} = \dots = P^n$
- n-step transition matrix for the inventory example :
- 2 3 state 0 1 2 3 state 0 1 0.080 0.184 0.368 0.368 0.289 0.286 0.261 0.164 \cap 0 $P^{(4)} = 1$ 0.282 0.285 0.268 0.166 0.632 0.368 0.000 0.000 1 $\mathbf{P} =$ 2 0.264 0.368 0.368 0.000 0.284 0.283 0.263 0.171 2 3 0.080 0.184 0.368 0.368 3 0.289 0.286 0.261 0.164

What is the probability that the camera store will have three cameras on hand 4 weeks after the inventory system began ?

•
$$P\{X_n = j\} = P\{X_0 = 0\}p_{0j}^{(n)} + P\{X_0 = 1\}p_{1j}^{(n)} + ... + P\{X_0 = M\}p_{Mj}^{(n)}$$

• P{ X₄ = 3 } = P{ X₀ = 0 }
$$p_{03}^{(4)}$$
 + P{ X₀ = 1 } $p_{13}^{(4)}$
+ P{ X₀ = 2 } $p_{23}^{(4)}$ + P{ X₀ = 3 } $p_{33}^{(4)}$
= (1) $p_{33}^{(4)}$ = 0.164

- Long-Run Properties of Markov Chain
 - Steady-State Probability

2 state 0 1 2 3 state 0 1 3 0.080 0.184 0.368 0.368 0.286 0.285 0.264 0.166 0 Ω 0.632 0.368 0.000 0.000 0.286 0.285 0.264 0.166 $P^{(8)} = 1$ 1 $\mathbf{P} =$ 2 0.264 0.368 0.368 0.000 0.286 0.285 0.264 0.166 2 3 0.080 0.184 0.368 0.368 3 0.286 0.285 0.264 0.166

- The steady-state probability implies that there is a limiting probability that the system will be in each state j after a large number of transitions, and that this probability is independent of the initial state.
- Not all Markov chains have this property.

state 0 1		1	2	3
0	π_0	π_1	π_2	π_3
1	π_0	π_1	π_2	π_3
2	π_0	π_1	π_2	π_3
3	π_0	π_1	π_2	π_3

• Steady-State Equations :

$$\pi_{j}=\sum_{i=0}^{M}\pi_{i}p_{ij}$$
 for i = 0, 1, ..., M
$$\sum_{j=0}^{M}\pi_{j}=1$$

■ , which consists of M+2 equations in M+1 unknowns.

• The inventory example :

$$\bullet \quad \pi_0 = \pi_0 p_{00} + \pi_1 p_{10} + \pi_2 p_{20} + \pi_3 p_{30} ,$$

$$\pi_1 = \pi_0 p_{01} + \pi_1 p_{11} + \pi_2 p_{21} + \pi_3 p_{31} ,$$

$$\pi_2 = \pi_0 p_{02} + \pi_1 p_{12} + \pi_2 p_{22} + \pi_3 p_{32}$$

$$\pi_3 = \pi_0 p_{03} + \pi_1 p_{13} + \pi_2 p_{23} + \pi_3 p_{33} ,$$

$$\bullet \quad \mathbf{1} = \pi_0 + \pi_1 + \pi_2 + \pi_3.$$

$$\begin{aligned} \pi_0 &= 0.080\pi_0 + 0.632\pi_1 + 0.264\pi_2 + 0.080\pi_3 , \\ \pi_1 &= 0.184\pi_0 + 0.368\pi_1 + 0.368\pi_2 + 0.184\pi_3 , \\ \pi_2 &= 0.368\pi_0 + + 0.368\pi_2 + 0.368\pi_3 , \\ \pi_3 &= 0.368\pi_0 + + 0.368\pi_3 , \\ 1 &= \pi_0 + \pi_1 + \pi_2 + \pi_3. \end{aligned}$$

•
$$\pi_0 = 0.286$$
, $\pi_1 = 0.285$, $\pi_2 = 0.263$, $\pi_3 = 0.166$

Reference

 Hillier and Lieberman, "Introduction to Operations Research", seventh edition, McGraw Hill

THANK YOU

