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Outline

 Stochastic Process
 Markov Chain



Stochastic Process
 A stochastic process is a indexed collection of random variables 

{Xt} = { X0, X1, X2, … } for describing the behavior of a system 
operating over some period of time.

 For example :
 X0 = 3, X1 = 2, X2 = 1, X3 = 0, X4 = 3, X5 = 1



Stochastic Process (cont.)
 An inventory example:
 A camera store stocks a particular model camera. 
 Dt represents the demand for this camera during week t. 
 Dt has a Poisson distribution with a mean of 1.
 Xt represents the number of cameras on hand at the end of 

week t. ( X0 = 3 )
 If there are no cameras in stock on Saturday night, the store 

orders three cameras.
 { Xt } is a stochastic process.
 Xt+1 = max{ 3 – Dt+1, 0 }      if Xt = 0

max{ Xt - Dt+1, 0 }      if Xt ≥ 0



Markov Chain
 A stochastic process {Xt} is a Markov chain if it has Markovian 

property.

 Markovian property:
 P{ Xt+1 = j | X0 = k0, X1 = k1, ..., Xt-1 = kt-1, Xt = i } 

= P{ Xt+1 = j | Xt = i }

 P{ Xt+1 = j | Xt = i } is called the transition probability.



Markov Chain (con.)
 Stationary transition probability:

 If ,for each i and j, P{ Xt+1 = j | Xt = i } = P{ X1 = j | X0 = i }, for 
all t, then the transition probability are said to be stationary.



Markov Chain (con.)
 Formulating the inventory example:

 Transition matrix:

P =

p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23

p30 p31 p32 p33

state 0 1 2 3

0

1

2

3



Markov Chain (con.)
 Xt+1 = max{ 3 – Dt+1, 0 }      if Xt = 0

max{ Xt - Dt+1, 0 }      if Xt ≥ 1

 p03 = P{ Dt+1 = 0 } = 0.368
 p02 = P{ Dt+1 = 1 } = 0.368
 p01 = P{ Dt+1 = 2 } = 0.184
 p00 = P{ Dt+1 ≥ 3 } = 0.080

P =

0.080 0.184 0.368 0.368

0.632 0.368 0.000 0.000

0.264 0.368 0.368 0.000

0.080 0.184 0.368 0.368

state 0 1 2 3

0

1

2

3



Markov Chain (con.)
 The state transition diagram:



Markov Chain (con.)
 n-step transition probability :

 pij
(n) = P{ Xt+n = j | Xt = i }

 n-step transition matrix :

P(n) =

P00
(n) P01

(n) ... P0M
(n)

P10
(n) P11

(n) ... P1M
(n)

... ... ... ...

PM0
(n) PM1

(n) ... PMM
(n)

state 0 1 ... M

0

1

.

.

M



Markov Chain (con.)
 Chapman-Kolmogorove Equation :

 The special cases of m = 1 leads to :

 Thus the n-step transition probability can be obtained from one-
step transition probability recursively. 
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Markov Chain (con.)
 Conclusion : 

 P(n) = PP(n-1) = PPP(n-2) = ... = Pn

 n-step transition matrix for the inventory example :

P =

0.080 0.184 0.368 0.368

0.632 0.368 0.000 0.000

0.264 0.368 0.368 0.000

0.080 0.184 0.368 0.368

state 0 1 2 3

0

1

2

3

P(4) =

0.289 0.286 0.261 0.164

0.282 0.285 0.268 0.166

0.284 0.283 0.263 0.171

0.289 0.286 0.261 0.164

state 0 1 2 3

0

1

2

3



Markov Chain (con.)
 What is the probability that the camera store will have three 

cameras on hand 4 weeks after the inventory system began ?

 P{ Xn = j } = P{ X0 = 0 }p0j
(n) + P{ X0 = 1 } p1j

(n) + ... 
+ P{ X0 = M } pMj

(n)

 P{ X4 = 3 } = P{ X0 = 0 }p03
(4) + P{ X0 = 1 } p13

(4)

+ P{ X0 = 2 } p23
(4) + P{ X0 = 3 } p33

(4)

= (1) p33
(4) = 0.164



Markov Chain (con.)
 Long-Run Properties of Markov Chain

 Steady-State Probability

P(8) =

0.286 0.285 0.264 0.166

0.286 0.285 0.264 0.166

0.286 0.285 0.264 0.166

0.286 0.285 0.264 0.166

state 0 1 2 3

0

1

2

3

P =

0.080 0.184 0.368 0.368

0.632 0.368 0.000 0.000

0.264 0.368 0.368 0.000

0.080 0.184 0.368 0.368

state 0 1 2 3

0

1

2

3



Markov Chain (con.)
 The steady-state probability implies that there is a limiting 

probability that the system will be in each state j after a large 
number of transitions, and that this probability is independent of 
the initial state.

 Not all Markov chains have this property.

π0 π1 π2 π3

π0 π1 π2 π3

π0 π1 π2 π3

π0 π1 π2 π3

state 0 1 2 3

0

1

2

3



Markov Chain (con.)
 Steady-State Equations :

 , which consists of M+2 equations in M+1 unknowns.
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Markov Chain (con.)
 The inventory example :
 π0 = π0p00 + π1p10 + π2p20 + π3p30 ,
 π1 = π0p01 + π1p11 + π2p21 + π3p31 ,
 π2 = π0p02 + π1p12 + π2p22 + π3p32 ,
 π3 = π0p03 + π1p13 + π2p23 + π3p33 ,
 1 = π0 + π1 + π2 + π3.

 π0 = 0.080π0 + o.632π1 + 0.264π2 + 0.080π3 ,
 π1 = 0.184π0 + 0.368π1 + 0.368π2 + 0.184π3 ,
 π2 = 0.368π0 +             + 0.368π2 + 0.368π3 ,
 π3 = 0.368π0 +             +             + 0.368π3 ,
 1 = π0 + π1 + π2 + π3.

 π0 = 0.286, π1 = 0.285, π2 = 0.263, π3 = 0.166



Reference
 Hillier and Lieberman, “Introduction to Operations Research”, 

seventh edition, McGraw Hill
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