

BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA

Lecture Notes

On

Markov Chain

Part 2

Prepared by, Dr. Subhendu Kumar Rath, BPUT, Odisha.

Markov Chain Part 2

Dr. Subhendu Kumar Rath Dy. Registrar, BPUT

Review

- Classification of States of a Markov Chain
- First passage times
- Absorbing States

Review

- Stochastic process :
 - A stochastic process is a indexed collection of random variables {X_t}
 = { X₀, X₁, X₂, ... } for describing the behavior of a system operating over some period of time.
- Markov chain :
 - A stochastic process having the Markovian property,
 - P{ $X_{t+1} = j | X_0 = k_0, X_1 = k_1, ..., X_{t-1} = k_{t-1}, X_t = i$ } = P{ $X_{t+1} = j | X_t = i$ }
- One-step transition probability :

•
$$p_{ij} = P\{ X_{t+1} = j | X_t = i \}$$

• N-step transition probability :

•
$$p_{ij}^{(n)} = P\{ X_{t+n} = j | X_t = i \}$$

• Chapman-Kolmogrove equations :

$$p_{ij}^{(n)} = \sum_{k=0}^{M} p_{ik}^{(m)} p_{kj}^{(n-m)} \qquad \begin{array}{l} \text{for all } i = 0, 1, \dots, M, \\ j = 0, 1, \dots, M, \\ \text{and any } m = 1, 2, \dots, n-1, \\ n = m+1, m+2, \dots \end{array}$$

• One-step transition matrix :

• N-step transition probability :

- Steady-state probability :
 - The steady-state probability implies that there is a limiting probability that the system will be in each state j after a large number of transitions, and that this probability is independent of the initial state.

- Accessible :
 - State j is accessible from state i if $P_{ij}^{(n)} > 0$ for some $n \ge 0$.
- Communicate :
 - If state j is accessible from state i and state i is accessible from state j, then states i and j are said to communicate.
 - If state i communicates with state j and state j communicates with state k, then state j communicates with state k.
- Class :
 - The state may be partitioned into one or more separate classes such that those states that communicate with each other are in the same class.

- Irreducible :
 - A Markov chain is said to be irreducible if there is only one class, i.e., all the states communicate.

- A gambling example :
 - Suppose that a player has \$1 and with each play of the game wins \$1 with probability p > 0 or loses \$1 with probability 1-p. The game ends when the player either accumulates \$3 or goes broke.

- Transient state :
 - A state is said to be a transient state if, upon entering this state, the process may never return to this state. Therefore, state I is transient if and only if there exists a state j (j≠i) that is accessible from state i but not vice versa.
- Recurrent state :
 - A state is said to be a recurrent state if, upon entering this state, the process definitely will return to this state again. Therefore, a state is recurrent if and only if it is not transient.

- Absorbing state :
 - A state is said to be an absorbing state if, upon entering this state, the process never will leave this state again. Therefore, state i is an absorbing state if and only if P_{ii} = 1.

- Period :
 - The period of state i is defined to be the integer t (t>1) such that $P_{ii}^{(n)} = 0$ for all value of n other than t, 2t, 3t,
 - $P_{11}^{(k+1)} = 0, k = 0, 1, 2, ...$
- Aperiodic :
 - If there are two consecutive numbers s and s+1 such that the process can be in the state i at times s and s+1, the state is said to be have period 1 and is called an aperiodic state.
- Ergodic :
 - Recurrent states that are aperiodic are called ergodic states.
 - A Markov chain is said to be ergodic if all its states are ergodic.
 - For any irreducible ergodic Markov chain, steady-state probability, ,exists.

- An inventory example :
 - The process is irreducible and ergodic and therefore, has steadystate probability.
- state 0 1 2 3 0 0.080 0.184 0.368 0.368 $\mathbf{P} = \begin{bmatrix} 1 & 0.632 & 0.368 & 0.000 & 0.000 \\ 2 & 0.264 & 0.368 & 0.368 & 0.000 \end{bmatrix}$
 - 3 0.080 0.184 0.368 0.368

First Passage Times

- First Passage time :
 - The first passage time from state i to state j is the number of transitions made by the process in going from state i to state j for the first time.
- Recurrence time :
 - When j = i, the first passage time is just the number of transitions until the process returns to the initial state i and called the recurrence time for state i.
- Example :
 - $X_0 = 3$, $X_1 = 2$, $X_2 = 1$, $X_3 = 0$, $X_4 = 3$, $X_5 = 1$
 - The first passage time from state 3 to state 1 is 2 weeks.
 - The recurrence time for state 3 is 4 weeks.

- $f_{ij}^{(n)}$
 - denotes the probability that the first passage time from state i to state j is n.
- Recursive relationship :

$$f_{ij}^{(n)} = \sum_{k \neq j} p_{ik} f_{kj}^{(n-1)}$$
$$f_{ij}^{(1)} = p_{ij}^{(1)} = p_{ij}$$

$$f_{ij}^{(2)} = \sum_{k \neq j} p_{ik} f_{kj}^{(1)}$$

- The inventory example :
 - $f_{30}^{(1)} = p_{30} = 0.080$
 - $f_{30}^{(2)} = p_{31} f_{10}^{(1)} + p_{32} f_{20}^{(1)} + p_{33} f_{30}^{(1)}$ = 0.184(0.632) + 0.368(0.264) + 0.368(0.080) = 0.243

Sum :

$$\sum_{n=1}^{\infty} f_{ij}^{(n)} \leq 1$$

... ...

- Expected first passage time :
- $\mu_{ij} = \bigotimes_{n=1}^{\infty} nf_{ij}^{(n)}$ if $\sum_{n=1}^{\infty} f_{ij}^{(n)} < 1$ $\sum_{n=1}^{\infty} nf_{ij}^{(n)}$ If $\sum_{n=1}^{\infty} f_{ij}^{(n)} = 1$

•
$$\mu_{ij} = 1 + \sum_{k \neq j} p_{ik} \mu_{ki}$$

- The inventory example :
 - $\mu_{30} = 1 + p_{31}\mu_{10} + p_{32}\mu_{20} + p_{33}\mu_{30}$
 - $\mu_{20} = 1 + p_{21}\mu_{10} + p_{22}\mu_{20} + p_{23}\mu_{30}$
 - $\mu_{10} = 1 + p_{11}\mu_{10} + p_{12}\mu_{20} + p_{13}\mu_{30}$
 - $\mu_{10} = 1.58$ weeks, $\mu_{20} = 2.51$ weeks, $\mu_{30} = 3.50$ weeks

Absorbing states

- Absorbing states :
 - A state k is called an absorbing state if p_{kk} = 1, so that once the chain visits k it remains there forever.
- An gambling example :
 - Suppose that two players (A and B), each having \$2, agree to keep playing the game and betting \$1 at a time until one player is broke. The probability of A winning a single bet is 1/3.

Absorbing states (cont.)

• The transition matrix form A's point of view

	state	e 0	1	2	3	4
	0	1	0	0	0	0
P =	1	2/3	0	1/3	0	0
	2	0	2/3	0	1/3	0
	3	0	0	2/3	0	1/3
	4	0	0	0	0	1

Absorbing states (cont.)

- Probability of absorption :
 - If k is an absorbing state, and the process starts in state i, the probability of ever going to state k is called the probability of absorption into state k, given the system started in state i.

$$f_{ik} = \sum_{j=0}^{M} p_{ij} f_{jk}$$
 for i = 0, 1, 2, ..., M

subject to the conditions

 $f_{kk} = 1$, $f_{ik} = 0$, if state i is the recurrent and $i \neq k$.

• The gambling example :

•
$$f_{20} = 4/5, f_{24} = 1/5$$

Reference

 Hillier and Lieberman, "Introduction to Operations Research", seventh edition, McGraw Hill

THANK YOU