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Review
 Stochastic process :

 A stochastic process is a indexed collection of random variables {Xt} 
= { X0, X1, X2, … } for describing the behavior of a system 
operating over some period of time.

 Markov chain :
 A stochastic process having the Markovian property,
 P{ Xt+1 = j | X0 = k0, X1 = k1, ..., Xt-1 = kt-1, Xt = i } 

= P{ Xt+1 = j | Xt = i }

 One-step transition probability :
 pij = P{ Xt+1 = j | Xt = i }



Review (cont.)
 N-step transition probability :

 pij
(n) = P{ Xt+n = j | Xt = i }

 Chapman-Kolmogrove equations :
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Review (cont.)
 One-step transition matrix :

P =

P00 P01 ... P0M

P10 P11 ... P1M

... ... ... ...

PM0 PM1 ... PMM

state 0 1 ... M
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Review (cont.)
 N-step transition probability :

P(n) =

P00
(n) P01

(n) ... P0M
(n)

P10
(n) P11

(n) ... P1M
(n)

... ... ... ...

PM0
(n) PM1

(n) ... PMM
(n)

state 0 1 ... M

0

1

.

.

M



Review (cont.)
 Steady-state probability :

 The steady-state probability implies that there is a limiting 
probability that the system will be in each state j after a large 
number of transitions, and that this probability is independent of 
the initial state.



Classification of States of a Markov Chain
 Accessible :

 State j is accessible from state i if Pij
(n) > 0 for some n ≥ 0.

 Communicate :
 If state j is accessible from state i and state i is accessible from 

state j, then states i and j are said to communicate.
 If state i communicates with state j and state j communicates with 

state k, then state j communicates with state k.

 Class :
 The state may be partitioned into one or more separate classes 

such that those states that communicate with each other are in the 
same class.



Classification of States of a Markov Chain 
(cont.)
 Irreducible :

 A Markov chain is said to be irreducible if there is only one class, 
i.e., all the states communicate.



Classification of States of a Markov Chain 
(cont.)
 A gambling example :

 Suppose that a player has $1 and with each play of the game wins 
$1 with probability p > 0 or loses $1 with probability 1-p. The 
game ends when the player either accumulates $3 or goes broke.

P =

1 0 0 0

1-p 0 p 0

0 1-p 0 p

0 0 0 1

state 0 1 2 3

0

1

2

3



Classification of States of a Markov Chain 
(cont.)
 Transient state :

 A state is said to be a transient state if, upon entering this state, 
the process may never return to this state. Therefore, state I is 
transient if and only if there exists a state j (j≠i) that is accessible 
from state i but not vice versa.

 Recurrent state :
 A state is said to be a recurrent state if, upon entering this state, 

the process definitely will return to this state again. Therefore, a 
state is recurrent if and only if it is not transient.



Classification of States of a Markov Chain 
(cont.)
 Absorbing state :

 A state is said to be an absorbing state if, upon entering this state, 
the process never will leave this state again. Therefore, state i is an 
absorbing state if and only if Pii = 1.

P =

1 0 0 0

1-p 0 p 0

0 1-p 0 p

0 0 0 1

state 0 1 2 3

0

1

2

3



Classification of States of a Markov Chain 
(cont.)
 Period :

 The period of state i is defined to be the integer t (t>1) such that 
Pii

(n) = 0 for all value of n other than t, 2t, 3t, ... .
 P11

(k+1) = 0, k = 0, 1 ,2 , ...

 Aperiodic :
 If there are two consecutive numbers s and s+1 such that the 

process can be in the state i at times s and s+1, the state is said to 
be have period 1 and is called an aperiodic state.

 Ergodic :
 Recurrent states that are aperiodic are called ergodic states.
 A Markov chain is said to be ergodic if all its states are ergodic.
 For any irreducible ergodic Markov chain, steady-state 

probability,          ,exists.
( )lim n
ijn

p
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Classification of States of a Markov Chain 
(cont.)
 An inventory example :

 The process is irreducible and ergodic and therefore, has steady-
state probability.

P =

0.080 0.184 0.368 0.368

0.632 0.368 0.000 0.000

0.264 0.368 0.368 0.000

0.080 0.184 0.368 0.368

state 0 1 2 3

0

1

2

3



First Passage Times
 First Passage time :

 The first passage time from state i to state j is the number of 
transitions made by the process in going from state i to state j for 
the first time.

 Recurrence time :
 When j = i, the first passage time is just the number of transitions 

until the process returns to the initial state i and called the 
recurrence time for state i.

 Example :
 X0 = 3, X1 = 2, X2 = 1, X3 = 0, X4 = 3, X5 = 1
 The first passage time from state 3 to state 1 is 2 weeks.
 The recurrence time for state 3 is 4 weeks.



First Passage Times (cont.)
 :

 denotes the probability that the first passage time from state i to 
state j is n.

 Recursive relationship :
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First Passage Times (cont.)
 The inventory example :

 f30
(1) = p30 = 0.080

 f30
(2) = p31 f10

(1) + p32 f20
(1) + p33 f30

(1)

= 0.184(0.632) + 0.368(0.264) + 0.368(0.080) = 0.243
 ... ...

 Sum :
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First Passage Times (cont.)
 Expected first passage time :

 µij = 
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First Passage Times (cont.)
 The inventory example :

 µ30 = 1 + p31µ10 + p32µ20 + p33µ30
 µ20 = 1 + p21µ10 + p22µ20 + p23µ30
 µ10 = 1 + p11µ10 + p12µ20 + p13µ30

 µ10 = 1.58 weeks, µ20 = 2.51 weeks, µ30 = 3.50 weeks



Absorbing states
 Absorbing states :

 A state k is called an absorbing state if pkk = 1, so that once the 
chain visits k it remains there forever.

 An gambling example :
 Suppose that two players (A and B), each having $2, agree to keep 

playing the game and betting $1 at a time until one player is broke. 
The probability of A winning a single bet is 1/3.



Absorbing states (cont.)
 The transition matrix form A’s point of view

P =

1 0 0 0

2/3 0 1/3 0

0 2/3 0 1/3

0 0 2/3 0

state 0 1 2 3

0

1

2

3

4

0

0

0

1/3

100004



Absorbing states (cont.)
 Probability of absorption :

 If k is an absorbing state, and the process starts in state i, the 
probability of ever going to state k is called the probability of 
absorption into state k, given the system started in state i.

 The gambling example :
 f20 = 4/5, f24 = 1/5 

0

M

ik ij jk
j

f p f
=

=∑ for i = 0, 1, 2, ..., M

subject to the conditions
fkk = 1,
fik = 0, if state i is the recurrent and i ≠ k.



Reference
 Hillier and Lieberman, “Introduction to Operations Research”, 

seventh edition, McGraw Hill
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