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Outline

 Continuous Time Markov Chains
 An Example



Continuous Time Markov Chains
 Discrete Time V.S. Continuous Time



Continuous Time Markov Chains (cont.)
 X(t’) : the state of the system at time t’

 Three points in time :
 t’ = r is a past time
 t’ = s is the current time
 t’ = s+t is t units of time into the future

 Markovian property :
 P{ X(s+t) = j | X(s) = i and X(r) = x(r) } = P{ X(s+t) = j | X(s) = i }

for all i, j = 0, 1, 2, ..., M and for all r≧0, s > r, and t > 0
 P{ X(s+t) = j | X(s) = i } is a transition probability.



Continuous Time Markov Chains (cont.)
 Stationary transition probability :

 If the transition probabilities are independent of s, so that
P{ X(s+t) = j | X(s) = i } = P{ X(t) = j | X(0) = i }
they are called stationary transition probability.

 pij(t) = P{ X(t) = j | X(0) = i } is called the continuous time 
transition probability function.

 Assumption :

0

1
lim ( )

0ijt
p t

→


= 


if i = j

if i ≠ j



Continuous Time Markov Chains (cont.)
 One key set of random variables, Ti :

 Each time the process enters state i, the amount of time it spends 
in that state before moving to a different state. ( i = 0, 1, 2, ..., M )

 Memoryless :
 P{ Ti > t + s | Ti > s } = P{ Ti > t }



Continuous Time Markov Chains (cont.)
 An equivalent way of describing a continuous time Markov 

chain :
 The random variable Ti has an exponential distribution with a mean 

1/qi.
 Pij : the probability of moving from state i to state j.

Pii = 0 and                     for all i 

 The next state visited after state i is independent of the time spent 
in state i.
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Continuous Time Markov Chains (cont.)
 Transition rates :

 qi = 

 qij = qipij

 Steady-state probabilities
 If a Markov chain is irreducible, then


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Continuous Time Markov Chains (cont.)
 Steady-state equation :
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An Example
 Model the traditional guard-channel scheme using continuous 

time Markov channel.

 The tradition guard-channel scheme :
Ct

0

TH

A new call is admitted only when there are 
less than TH channels occupied. 

A handoff request is rejected only when all 
channels are occupied.



An Example (cont.)
 The system : A cell
 The state : the number of occupied channels in a cell



An Example (cont.)
 Steady-state probabilities :



An Example (cont.)
 Call dropping probability :

 Call blocking probability :



An Example (cont.)
 Find an TH which guarantees that CDP is kept below the 

tolerable level.

 Why not to keep CBP below the tolerable level ?



An Example (cont.)
 The proposed approach :

 A cell is classified into two categories, hot cells and cold cells.
 Hot cells : Cu > TH
 Cold Cells : Cu ≦ TH
 Cold cells follow the same CAC as in the traditional guard-channel 

scheme, while hot cells admit new calls with a probability, PCA, 
instead of blocking new calls absolutely.





An Example (cont.)



An Example (cont.)



Top Sentences
 Just as the transition probabilities for a discrete time Markov 

chain satisfy the Chapman Kolmogorov equations, the 
continuous time transition probability function also satisfies 
these equations.

 just as可用於比擬。 ---- I-Chi

 More specifically, a new call request is admitted only when there 
are less than TH channels occupied.

 more specifically可表示更進一步具體說明。 ---- I-Chi

 We shall restrict our consideration to continuous time Markov 
chains with the following properties.

 restrict our consideration to 可用於界定討論範圍。 ---- I-Chi
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