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Formation of Partial Differential Equations 

In practice, there are two methods to form a partial differential equation. 

(i) By the elimination of arbitrary constants. 

(ii) By the elimination of arbitrary functions. 

  

(i) Formation of Partial Differential Equations by the elimination of arbitrary 

constants method: 

  *    Let f(x,y,z,a,b)=0 be an equation containing 2 arbitrary constants ''a'' and ''b''.  
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  *    To eliminate 2 constants we require at least 3 equations hence we partially 

differentiate the above equation with respect to (w.r.t) ‘x’ and w.r.t ‘y’ to obtain 2 

more equations.  

  *    From the three equations we can eliminate the constants ''a'' and ''b''. 

 NOTE 1: If the number of arbitrary constants to be eliminated is equal to the 

number independent variables, elimination of constants gives a first order partial 

differential equation.    But if the number of arbitrary constants to be eliminated is 

greater than the number     of independent variables, then elimination of constants 
gives a second or higher order partial differential equation. 

 NOTE 2: In this chapter we use the following notations: 

  p = ∂z/∂x,          q = ∂z/∂y,       r = ∂2z/∂x2,             s = ∂2z/(∂x∂y),         t = ∂2z/∂y2 

  

METHOD TO SOLVE PROBLEMS: 

Step 1: Differentiate the given question first w.r.t ‘x’ and then w.r.t ‘y’. 

Step 2: We know p = ∂z/∂x and q = ∂z/∂y. 

Step 3: Now find out a and b values in terms of p and q. 

Step 4: Substitute these values in the given equation. 

Step 5: Hence the final equation is in terms of p and q and free of arbitrary constants ''a'' and ''b'' 

which is the required partial differential equation. 

(ii) Formation of Partial Differential Equations by the elimination of arbitrary 

functions method: 

* Here it is the arbitrary function that gets eliminated instead of the arbitrary constants ''a'' and 

''b''. 

  

NOTE: The elimination of 1 arbitrary function from a given partial differential 

equation gives a first order partial differential equation while the elimination of 

the 2 arbitrary functions from a given relation gives second or higher order partial 

differential equations. 
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METHOD TO SOLVE PROBLEMS: 

Step 1: Differentiate the given question first w.r.t ‘x’ and then w.r.t ‘y’. 

Step 2: We know p = ∂z/∂x and q = ∂z/∂y. 

Step 3: Now find out the value of the differentiated function (f
''
 ) from both the equations 

separately. [(f’’) =?] 

Step 4: Equate the other side of the differentiated function (f
''
 ) which is in terms of p in one 

equation and q in other. 

Step 5: Hence the final equation is in terms of p and q and free of the arbitrary function which is 

the required p.d.e. 

  

* Incase there are 2 arbitrary functions involved, then do single differentiation i.e. p = ∂z/∂x, q = 

∂z/∂y, then also do double differentiation i.e. r = ∂2z/∂x2,  t = ∂2z/∂y2 and then eliminate 

(f'' ) and (f'''' ) from these equations. 

 

 

Worked out Examples 

Elimination of arbitrary constants: 

Ex 1:
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Elimination of arbitrary functions: 

Ex 2:
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Partial Differential Equations of First Order 

The general form of first order p.d.e is F(x, y,z,p,q)=0  .... (1)  where x,y are the 

independent variables and z is dependent variable . 

Types of Solution of first order partial differential equations 

Complete Solution 

Any function  f(x,y,z,a,b)=0 ........(2) involving arbitrary  constants  a and b satisfying  

p.d.e (1) is known as complete solution or complete integral of (1). 

General Solution 
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Any function F (u,v)=0.......(3)  satisfying  p.d.e (1) is known as general solution or of (1). 

 

Linear partial differential equations of First Order 

Larange’s Linear Equation 

The equation of the form Pp+Qq=R......(1) where P,Q,R are functions of x,y,z is called 

Lagrange’s partial differential equation. Any function F(u,v)=0 .....(2) where u=u(x,y,z) 

and v=v(x,y,z) satisfying  (1)  is the general solution . 

Methods of obtaining General Solution  
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NON LINEAR P.D.Es OF FIRST ORDER 
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The Heat Equation 

 The first partial differential equation that we’ll be looking at once we get started with solving 

will be the heat equation, which governs the temperature distribution in an object.  We are going 

to give several forms of the heat equation for reference purposes, but we will only be really 

solving one of them. 

 We will start out by considering the temperature in a 1-D bar of length L.  What this means is 

that we are going to assume that the bar starts off at  and ends when we reach .  We 

are also going to so assume that at any location, x the temperature will be constant an every point 

in the cross section at that x.  In other words, temperature will only vary in x and we can hence 

consider the bar to be a 1-D bar.  Note that with this assumption the actual shape of the cross 

section (i.e. circular, rectangular, etc.) doesn’t matter. 

 Partial Differential Equations 

In this chapter we are going to take a very brief look at one of the more common 

methods for solving simple partial differential equations.  
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 Note that the 1-D assumption is actually not all that bad of an assumption as it might seem at 

first glance.  If we assume that the lateral surface of the bar is perfectly insulated (i.e. no heat can 

flow through the lateral surface) then the only way heat can enter or leave the bar as at either 

end.  This means that heat can only flow from left to right or right to left and thus creating a 1-D 

temperature distribution.   

 The assumption of the lateral surfaces being perfectly insulated is of course impossible, but it is 

possible to put enough insulation on the lateral surfaces that there will be very little heat flow 

through them and so, at least for a time, we can consider the lateral surfaces to be perfectly 

insulated. 

Let’s now get some definitions out of the way before we write down the first form of the heat 

equation. 

  

 

  

The mass density , is the mass per unit volume of the material.  As with the specific heat 

we’re going to initially assume that the mass density may not be uniform throughout the bar. 

 The heat flux, , is the amount of thermal energy that flows to the right per unit surface 

area per unit time.  The “flows to the right” bit simply tells us that if        for some x and t 

then the heat is flowing to the right at that point and time.  Likewise if  then the heat 

will be flowing to the left at that point and time. 

 The final quantity we defined above is    and this is used to represent any external sources 

or sinks (i.e. heat energy taken out of the system) of heat energy.  If  then heat energy 

is being added to the system at that location and time and if  then heat energy is being 

removed from the system at that location and time. 

 With these quantities the heat equation is, 
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(1) 

While this is a nice form of the heat equation it is not actually something we can solve.  In this 

form there are two unknown functions, u and , and so we need to get rid of one of them.  With 

Fourier’s law we can easily remove the heat flux from this equation. 

 Fourier’s law states that, 

 
 

  

where     is the thermal conductivity of the material and measures the ability of a given 

material to conduct heat.  The better a material can conduct heat the larger  will be.  

As noted the thermal conductivity can vary with the location in the bar.  Also, much like the 

specific heat the thermal conductivity can vary with temperature, but we will assume that the 

total temperature change is not so great that this will be an issue and so we will assume for the 

purposes here that the thermal conductivity will not vary with temperature. 

 Fourier’s law does a very good job of modeling what we know to be true about heat flow.  First, 

we know that if the temperature in a region is constant, i.e. , then there is no heat flow.   

 Next, we know that if there is a temperature difference in a region we know the heat will flow 

from the hot portion to the cold portion of the region.  For example, if it is hotter to the right then 

we know that the heat should flow to the left.  When it is hotter to the right then we also know 

that  (i.e. the temperature increases as we move to the right) and so we’ll have  and so 

the heat will flow to the left as it should.  Likewise, if  (i.e. it is hotter to the left) then 

we’ll have  and heat will flow to the right as it should. 

Finally, the greater the temperature difference in a region (i.e. the larger  is) then the greater 

the heat flow. 

 So, if we plug Fourier’s law into (1), we get the following form of the heat equation, 

  

 

(2) 

http://tutorial.math.lamar.edu/Classes/DE/TheHeatEquation.aspx#ZEqnNum136334
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 Note that we factored the minus sign out of the derivative to cancel against the minus sign that 

was already there.  We cannot however, factor the thermal conductivity out of the derivative 

since it is a function of x and the derivative is with respect to x. 

 Solving (2) is quite difficult due to the non uniform nature of the thermal properties and the 

mass density.  So, let’s now assume that these properties are all constant, i.e., 

  
 

  

where c,  and  are now all fixed quantities.  In this case we generally say that the material in 

the bar is uniform.  Under these assumptions the heat equation becomes, 

 
 

(3) 

 For a final simplification to the heat equation let’s divide both sides by  and define the 

thermal diffusivity to be, 

 
 

  

The heat equation is then, 

 

 

 
 

(4) 

 To most people this is what they mean when they talk about the heat equation and in fact it will 

be the equation that we’ll be solving.  Well, actually we’ll be solving (4) with no external 

sources, i.e. , but we’ll be considering this form when we start discussing separation 

of variables in a couple of sections.  We’ll only drop the sources term when we actually start 

solving the heat equation. 

 Now that we’ve got the 1-D heat equation taken care of we need to move into the initial and 

boundary conditions we’ll also need in order to solve the problem. .   

 The initial condition that we’ll use here is, 

 

and we don’t really need to say much about it here other than to note that this just tells us what 

the initial temperature distribution in the bar is. 

http://tutorial.math.lamar.edu/Classes/DE/TheHeatEquation.aspx#ZEqnNum515976
http://tutorial.math.lamar.edu/Classes/DE/TheHeatEquation.aspx#ZEqnNum258908
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 The boundary conditions will tell us something about what the temperature and/or heat flow is 

doing at the boundaries of the bar.  There are four of them that are fairly common boundary 

conditions. 

 The first type of boundary conditions that we can have would be the prescribed temperature 

boundary conditions, also called Dirichlet conditions.  The prescribed temperature boundary 

conditions are, 

 

  

  

 The next type of boundary conditions are prescribed heat flux, also called Neumann 

conditions.  Using Fourier’s law these can be written as, 

 

 

  

 If either of the boundaries are perfectly insulated, i.e. there is no heat flow out of them then 

these boundary conditions reduce to, 

 
 

  

and note that we will often just call these particular boundary conditions insulated boundaries 

and drop the “perfectly” part. 

  

The third type of boundary conditions use Newton’s law of cooling and are sometimes called 

Robins conditions.  These are usually used when the bar is in a moving fluid and note we can 

consider air to be a fluid for this purpose.   

 Here are the equations for this kind of boundary condition. 

 

 

  

where H is a positive quantity that is experimentally determined and  and  give the 

temperature of the surrounding fluid at the respective boundaries. 

 Note that the two conditions do vary slightly depending on which boundary we are at.  At 

 we have a minus sign on the right side while we don’t at .  To see why 

this is let’s first assume that at  we have .  In other words the bar is hotter 
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than the surrounding fluid and so at  the heat flow (as given by the left side of the equation) 

must be to the left, or negative since the heat will flow from the hotter bar into the cooler 

surrounding liquid.  If the heat flow is negative then we need to have a minus sign on the right 

side of the equation to make sure that it has the proper sign. 

 If the bar is cooler than the surrounding fluid at , i.e.  we can make a similar 

argument to justify the minus sign.  We’ll leave it to you to verify this. 

 If we now look at the other end, , and again assume that the bar is hotter than the 

surrounding fluid or, .  In this case the heat flow must be to the right, or be 

positive, and so in this case we can’t have a minus sign.  Finally, we’ll again leave it to you to 

verify that we can’t have the minus sign at  is the bar is cooler than the surrounding fluid as 

well. 

  

  

The final type of boundary conditions that we’ll need here are periodic boundary conditions.  

Periodic boundary conditions are, 

  
 

  

 Note that for these kinds of boundary conditions the left boundary tends to be  instead of 

 as we were using in the previous types of boundary conditions.  The periodic 

boundary conditions will arise very naturally from a couple of particular geometries that we’ll be 

looking at down the road. 

 We will now close out this section with a quick look at the 2-D and 3-D version of the heat 

equation.  However, before we jump into that we need to introduce a little bit of notation first.   

 The del operator is defined to be, 

 

 

 

  

depending on whether we are in 2 or 3 dimensions.  Think of the del operator as a function that 

takes functions as arguments (instead of numbers as we’re used to).  Whatever function we 

“plug” into the operator gets put into the partial derivatives. 

 So, for example in 3-D we would have, 
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This of course is also the gradient of the function . 

 The del operator also allows us to quickly write down the divergence of a function.  So, again 

using 3-D as an example the divergence of  can be written as the dot product of the del 

operator and the function.  Or, 

 
 

  

 Finally, we will also see the following show up in the our work, 

 
 

  

 This is usually denoted as, 

 
 

  

and is called the Laplacian.  The 2-D version of course simply doesn’t have the third term. 

 Okay, we can now look into the 2-D and 3-D version of the heat equation and where ever the del 

operator and or Laplacian appears assume that it is the appropriate dimensional version. 

 The higher dimensional version of (1) is, 

  
 

(5) 

and note that the specific heat, c, and mass density, , are may not be uniform and so may be 

functions of the spatial variables.  Likewise, the external sources term, Q, may also be a function 

of both the spatial variables and time. 

 Next, the higher dimensional version of Fourier’s law is, 

  

  

where the thermal conductivity, , is again assumed to be a function of the spatial variables. 
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If we plug this into (5) we get the heat equation for a non uniform bar (i.e. the thermal properties 

may be functions of the spatial variables) with external sources/sinks, 

  
 

(6) 

 If we now assume that the specific heat, mass density and thermal conductivity are constant (i.e. 

the bar is uniform) the heat equation becomes, 

 
 

(7) 

where we divided both sides by  to get the thermal diffusivity, k in front of the Laplacian. 

The initial condition for the 2-D or 3-D heat equation is, 

 

 

 

  

depending upon the dimension we’re in. 

 The prescribed temperature boundary condition becomes, 

 
 

  

where    or , depending upon the dimension we’re in, will range over the portion of 

the boundary in which we are prescribing the temperature. 

 The prescribed heat flux condition becomes, 

  

  

where the left side is only being evaluated at points along the boundary and  is the outward 

unit normal on the surface. 

 Newton’s law of cooling will become, 
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where H is a positive quantity that is experimentally determine,   is the temperature of 

the fluid at the boundary and again it is assumed that this is only being evaluated at points along 

the boundary. 

 We don’t have periodic boundary conditions here as they will only arise from specific 1-D 

geometries. 

 We should probably also acknowledge at this point that we’ll not actually be solving (7) at any 

point, but we will be solving a special case of it in the Laplace’s Equation section. 

The Wave Equation 

In this section we want to consider a vertical string of length L that has been tightly stretched 

between two points at  and .   

 Because the string has been tightly stretched we can assume that the slope of the displaced string 

at any point is small.  So just what does this do for us?  Let’s consider a point x on the string in 

its equilibrium position, i.e. the location of the point at .  As the string vibrates this point 

will be displaced both vertically and horizontally, however, if we assume that at any point the 

slope of the string is small then the horizontal displacement will be very small in relation to the 

vertical displacement.  This means that we can now assume that at any point x on the string the 

displacement will be purely vertical.  So, let’s call this displacement . 

We are going to assume, at least initially, that the string is not uniform and so the mass density of 

the string,  may be a function of x. 

 Next we are going to assume that the string is perfectly flexible.  This means that the string will 

have no resistance to bending.  This in turn tells us that the force exerted by the string at any 

point x on the endpoints will be tangential to the string itself.  This force is called the tension in 

the string and its magnitude will be given by . 

 Finally, we will let  represent the vertical component per unit mass of any force acting on 

the string. Provided we again assume that the slope of the string is small the vertical 

displacement of the string at any point is then given by, 

 
 

(1) 

 This is a very difficult partial differential equation to solve so we need to make some further 

simplifications. 

 First, we’re now going to assume that the string is perfectly elastic.  This means that the 

magnitude of the tension, , will only depend upon how much the string stretches near x.  

http://tutorial.math.lamar.edu/Classes/DE/TheHeatEquation.aspx#ZEqnNum368310
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Again, recalling that we’re assuming that the slope of the string at any point is small this means 

that the tension in the string will then very nearly be the same as the tension in the string in its 

equilibrium position.  We can then assume that the tension is a constant value, . 

 Further, in most cases the only external force that will act upon the string is gravity and if the 

string light enough the effects of gravity on the vertical displacement will be small and so will 

also assume that .  This leads to 

 
 

  

 If we know divide by the mass density and define, 

 
 

  

 

we arrive at the 1-D wave equation, 

 
 

(2) 

 In the previous section when we looked at the heat equation he had a number of boundary 

conditions however in this case we are only going to consider one type of boundary conditions.  

For the wave equation the only boundary condition we are going to consider will be that of 

prescribed location of the boundaries or, 

  

  

 The initial conditions (and yes we meant more than one…) will also be a little different here 

from what we saw with the heat equation.  Here we have a 2
nd

 order time derivative and so we’ll 

also need two initial conditions.  At any point we will specify both the initial displacement of the 

string as well as the initial slope of the string.  The initial conditions are then, 

 

 

 

  

 For the sake of completeness we’ll close out this section with the 2-D and 3-D version of the 

wave equation.  We’ll not actually be solving this at any point, but since we gave the higher 

dimensional version of the heat equation (in which we will solve a special case) we’ll give this as 

well. 

 The 2-D and 3-D version of the wave equation is, 
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where  is the Laplacian. 

 Separation of Variables 

Okay, it is finally time to at least start discussing one of the more common methods for solving 

basic partial differential equations.  The method of Separation of Variables cannot always be 

used and even when it can be used it will not always be possible to get much past the first step in 

the method.  However, it can be used to easily solve the 1-D heat equation with no sources, the 

1-D wave equation, and the 2-D version of Laplace’s Equation, . 

 In order to use the method of separation of variables we must be working with a linear 

homogenous partial differential equations with linear homogeneous boundary conditions.  At this 

point we’re not going to worry about the initial condition(s) because the solution that we initially 

get will rarely satisfy the initial condition(s).  As we’ll see however there are ways to generate a 

solution that will satisfy initial condition(s) provided they meet some fairly simple requirements. 

 The method of separation of variables relies upon the assumption that a function of the form, 

  

(1) 

will be a solution to a linear homogeneous partial differential equation in x and t.  This is called a 

product solution and provided the boundary conditions are also linear and homogeneous this 

will also satisfy the boundary conditions.  However, as noted above this will only rarely satisfy 

the initial condition, but that is something for us to worry about in the next section. 

 So, let’s do a couple of examples to see how this method will reduce a partial differential 

equation down to two ordinary differential equations.  

 

Example 1  Use Separation of Variables on the following partial differential equation. 

                                

Solution 

So, we have the heat equation with no sources, fixed temperature boundary conditions (that are 

also homogeneous) and an initial condition.  The initial condition is only here because it belongs 

here, but we will be ignoring it until we get to the next section. 

http://tutorial.math.lamar.edu/Classes/DE/TheHeatEquation.aspx#PDE_Laplacian
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 The method of separation of variables tells us to assume that the solution will take the form of 

the product, 

                                                         

so all we really need to do here is plug this into the differential equation and see what we get. 

                                            

 As shown above we can factor the  out of the time derivative and we can factor the 

 out of the spatial derivative.  Also notice that after we’ve factored these out we no longer have a 

partial derivative left in the problem.  In the time derivative we are now differentiating only 

 with respect to t and this is now an ordinary derivative.  Likewise, in the spatial derivative we 

are now only differentiating  with respect to x and so we again have an ordinary derivative. 

At this point it probably doesn’t seem like we’ve done much to simplify the problem.  However, 

just the fact that we’ve gotten the partial derivatives down to ordinary derivatives is liable to be 

good thing even if it still looks like we’ve got a mess to deal with. 

 Speaking of that apparent (and yes I said apparent) mess, is it really the mess that it looks like?  

The idea is to eventually get all the t’s on one side of the equation and all the x’s on the other 

side.  In other words we want to “separate the variables” and hence the name of the method.  In 

this case let’s notice that if we divide both sides by  we get want we want and we 

should point out that it won’t always be as easy as just dividing by the product solution.  So, 

dividing out gives us, 

                       

 Notice that we also divided both sides by k.  This was done only for convenience down the 

road.  It doesn’t have to be done and nicely enough if it turns out to be a bad idea we can always 

come back to this step and put it back on the right side.  Likewise, if we don’t do it and it turns 

out to maybe not be such a bad thing we can always come back and divide it out.  For the time 

being however, please accept our word that this was a good thing to do for this problem.  We 

will discuss the reasoning for this after we’re done with this example. 

 Now, while we said that this is what we wanted it still seems like we’ve got a mess.  Notice 

however that the left side is a function of only t and the right side is a function only of x as we 

wanted.  Also notice these two functions must be equal. 
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 Let’s think about this for a minute.  How is it possible that a function of only t’s can be equal to 

a function of only x’s regardless of the choice of t and/or x that we have?  This may seem like an 

impossibility until you realize that there is one way that this can be true.  If both functions (i.e. 

both sides of the equation) were in fact constant and not only a constant, but the same constant 

then they can in fact be equal. 

 So, we must have, 

                                                       

where the  is called the separation constant and is arbitrary. 

The next question that we should now address is why the minus sign?  Again, much like the 

dividing out the k above, the answer is because it will be convenient down the road to have 

chosen this.  The minus sign doesn’t have to be there and in fact there are times when we don’t 

want it there. 

 So how do we know it should be there or not?  The answer to that is to proceed to the next step 

in the process (which we’ll see in the next section) and at that point we’ll know if would be 

convenient to have it or not and we can come back to this step and add it in or take it our 

depending what we chose to do here. 

 Okay, let’s proceed with the process.  The next step is to acknowledge that we can take the 

equation above and split it into the following two ordinary differential equations.  

                                       

 Both of these are very simple differential equations, however because we don’t know what 

 is we actually can’t solve the spatial one yet.  The time equation however could be solved at this 

point if we wanted to, although that won’t always be the case.  At this point we don’t want to 

actually think about solving either of these yet however. 

 The last step in the process that we’ll be doing in this section is to also make sure that our 

product solution, , satisfies the boundary conditions so let’s plug it into both 

of those. 

                       

 Let’s consider the first one for a second.  We have two options here.  Either  or 

 for every t.  However, if we have  for every t then we’ll also have , 

i.e. the trivial solution, and as we discussed in the previous section this is definitely a solution to 
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any linear homogeneous equation we would really like a non-trivial solution. 

 Therefore we will assume that in fact we must have .  Likewise, from the second 

boundary condition we will get  to avoid the trivial solution.  Note as well that we were 

only able to reduce the boundary conditions down like this because they were homogeneous.  

Had they not been homogeneous we could not have done this. 

 So, after applying separation of variables to the given partial differential equation we arrive at a 

1
st
 order differential equation that we’ll need to solve for  and a 2

nd
 order boundary value 

problem that we’ll need to solve for .  The point of this section however is just to get to this 

point and we’ll hold off solving these until the next section. 

 Let’s summarize everything up that we’ve determined here. 

                             

and note that we don’t have a condition for the time differential equation and is not a problem.  

Also note that we rewrote the second one a little. 

 So just what have we learned here?  By using separation of variables we were able to reduce our 

linear homogeneous partial differential equation with linear homogeneous boundary conditions 

down to an ordinary differential equation for one of the functions in our product solution (1), 

 in this case, and a boundary value problem that we can solve for the other function,  in 

this case. 

Example 2  Use Separation of Variables on the following partial differential equation. 

 

Solution 

In this case we’re looking at the heat equation with no sources and perfectly insulated 

boundaries.So, we’ll start off by again assuming that our product solution will have the form, 

 

and because the differential equation itself hasn’t changed here we will get the same result from 

http://tutorial.math.lamar.edu/Classes/DE/SeparationofVariables.aspx#ZEqnNum272605
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plugging this in as we did in the previous example so the two ordinary differential equations that 

we’ll need to solve are, 

 

Now, the point of this example was really to deal with the boundary conditions so let’s plug the 

product solution into them to get, 

 

Now, just as with the first example if we want to avoid the trivial solution and so we can’t have 

 for every t and so we must have, 

 

Here is a summary of what we get by applying separation of variables to this problem. 

 

 Next, let’s see what we get if use periodic boundary conditions with the heat equation.  

Example 3  Use Separation of Variables on the following partial differential equation. 

                  

Solution 

First note that these boundary conditions really are homogeneous boundary conditions.  If we 

rewrite them as, 
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it’s a little easier to see. 

 Now, again we’ve done this partial differential equation so we’ll start off with, 

                                                         

and the two ordinary differential equations that we’ll need to solve are, 

                                       

 Plugging the product solution into the rewritten boundary conditions gives, 

                        

and we can see that we’ll only get non-trivial solution if, 

                         

 So, here is what we get by applying separation of variables to this problem. 

               

 Let’s now take a look at what we get by applying separation of variables to the wave equation 

with fixed boundaries. 

Example 4  Use Separation of Variables on the following partial differential equation. 
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Solution 

Now, as with the heat equation the two initial conditions are here only because they need to be 

here for the problem.  We will not actually be doing anything with them here and as mentioned 

previously the product solution will rarely satisfy them.  We will be dealing with those in a later 

section when we actually go past this first step.  Again, the point of this example is only to get 

down to the two ordinary differential equations that separation of variables gives. 

 So, let’s get going on that and plug the product solution,  (we switched the G 

to an h here to avoid confusion with the g in the second initial condition) into the wave equation 

to get, 

                                           

 Note that we moved the  to the right side for the same reason we moved the k in the heat 

equation.  It will make solving the boundary value problem a little easier.   

 Now that we’ve gotten the equation separated into a function of only t on the left and a function 

of only x on the right we can introduce a separation constant and again we’ll use  so we can 

arrive at a boundary value problem that we are familiar with.  So, after introducing the separation 

constant we get, 

                                                      

 

The two ordinary differential equations we get are then, 

                                       

 The boundary conditions in this example are identical to those from the first example and so 

plugging the product solution into the boundary conditions gives, 

                                         

 Applying separation of variables to this problem gives, 
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Next, let’s take a look at the 2-D Laplace’s Equation. 

  

Example 5  Use Separation of Variables on the following partial differential equation. 

                                  

Solution 

This problem is a little (well actually quite a bit in some ways) different from the heat and wave 

equations.  First, we no longer really have a time variable in the equation but instead we usually 

consider both variables to be spatial variables and we’ll be assuming that the two variables are in 

the ranges shown above in the problems statement.  Note that this also means that we no longer 

have initial conditions, but instead we now have two sets of boundary conditions, one for x and 

one for y. 

 Also, we should point out that we have three of the boundary conditions homogeneous and one 

nonhomogeneous for a reason.  When we get around to actually solving this Laplace’s Equation 

we’ll see that this is in fact required in order for us to find a solution. 

 For this problem we’ll use the product solution, 

                                                        

 It will often be convenient to have the boundary conditions in hand that this product solution 

gives before we take care of the differential equation.  In this case we have three homogeneous 

boundary conditions and so we’ll need to convert all of them.  Because we’ve already converted 

these kind of boundary conditions we’ll leave it to you to verify that these will become, 

                            

 Plugging this into the differential equation and separating gives, 
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 Okay, now we need to decide upon a separation constant.  Note that every time we’ve chosen 

the separation constant we did so to make sure that the differential equation 

                                                             

would show up.  Of course, the letters might need to be different depending on how we defined 

our product solution (as they’ll need to be here).  We know how to solve this 

eigenvalue/eigenfunction problem as we pointed out in the discussion after the first example.  

However, in order to solve it we need two boundary conditions.   

So, for our problem here we can see that we’ve got two boundary conditions for  but only 

one for  and so we can see that the boundary value problem that we’ll have to solve will 

involve  and so we need to pick a separation constant that will give use the boundary value 

problem we’ve already solved.  In this case that means that we need to choose  for the 

separation constant.  If you’re not sure you believe that yet hold on for a second and you’ll soon 

see that it was in fact the correct choice here. 

 Putting the separation constant gives, 

                                                       

 The two ordinary differential equations we get from Laplace’s Equation are then, 

                                       

and notice that if we rewrite these a little we get, 
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 We can now see that the second one does now look like one we’ve already solved (with a small 

change in letters of course, but that really doesn’t change things). 

 So, let’s summarize up here.  

                            

  

So, we’ve finally seen an example where the constant of separation didn’t have a minus sign and 

again note that we chose it so that the boundary value problem we need to solve will match one 

we’ve already seen how to solve so there won’t be much work to there. 

  

All the examples worked in this section to this point are all problems that we’ll continue in later 

sections to get full solutions for.  Let’s work one more however to illustrate a couple of other 

ideas.  We will not however be doing any work with this in later sections however, it is only here 

to illustrate a couple of points. 

Example 6  Use Separation of Variables on the following partial differential equation. 

                         

Solution 

Note that this is a heat equation with the source term of  and is both linear and 

homogenous.  Also note that for the first time we’ve mixed boundary condition types.  At 

 we’ve got a prescribed temperature and at  we’ve got a Newton’s law of cooling type 

boundary condition.  We should not come away from the first few examples with the idea that 

the boundary conditions at both boundaries always the same type.  Having them the same type 

just makes the boundary value problem a little easier to solve in many cases. 

 So we’ll start off with, 

                                                         

and plugging this into the partial differential equation gives, 
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Now, the next step is to divide by  and notice that upon doing that the second term on 

the right will become a one and so can go on either side.  Theoretically there is no reason that the 

one can’t be on either side, however from a practical standpoint we again want to keep things a 

simple as possible so we’ll move it to the t side as this will guarantee that we’ll get a differential 

equation for the boundary value problem that we’ve seen before. So, separating and introducing 

a separation constant gives, 

                                                  

 The two ordinary differential equations that we get are then (with some rewriting), 

                                       

 Now let’s deal with the boundary conditions. 

                              

and we can see that we’ll only get non-trivial solution if, 

                                 

 So, here is what we get by applying separation of variables to this problem. 

               

    

Solving the Heat Equation 
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  In this section we will now solve those ordinary differential equations and use the results to get 

a solution to the partial differential equation.  We will be concentrating on the heat equation in 

this section and will do the wave equation and Laplace’s equation in later sections. 

 The first problem that we’re going to look at will be the temperature distribution in a bar with 

zero temperature boundaries.  We are going to do the work in a couple of steps so we can take 

our time and see how everything works. 

  

The first thing that we need to do is find a solution that will satisfy the partial differential 

equation and the boundary conditions.  At this point we will not worry about the initial condition. 

 The solution we’ll get first will not satisfy the vast majority of initial conditions but as we’ll see 

it can be used to find a solution that will satisfy a sufficiently nice initial condition. 

  

Example 1  Find a solution to the following partial differential equation that will also satisfy the 

boundary conditions. 

                                

Solution 

The first thing we technically need to do here is apply separation of variables. Even though we 

did that in the previous section let’s recap here what we did.   

 First, we assume that the solution will take the form, 

                                                         

and we plug this into the partial differential equation and boundary conditions.  We separate the 

equation to get a function of only t on one side and a function of only x on the other side and then 

introduce a separation constant.  This leaves us with two ordinary differential equations. 

 We did all of this in Example 1 of the previous section and the two ordinary differential 

equations are, 

                             

 The time dependent equation can really be solved at any time, but since we don’t know what 

http://tutorial.math.lamar.edu/Classes/DE/SeparationofVariables.aspx#PDE_SepVariables_Ex1
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 is yet let’s hold off on that one.  Also note that in many problems only the boundary value 

problem can be solved at this point so don’t always expect to be able to solve either one at this 

point. 

 The spatial equation is a boundary value problem and we know from our work in the previous 

chapter that it will only have non-trivial solutions (which we want) for certain values of , which 

we’ll recall are called eigenvalues.  Once we have those we can determine the non-trivial 

solutions for each , i.e. eigenfunctions. 

 Now, we actually solved the spatial problem, 

                                                     

 in Example 1 of the Eigenvalues and Eigenfunctions section of the previous chapter for .  

So, because we’ve solved this once for a specific L and the work is not all that much different for 

a general L we’re not going to be putting in a lot of explanation here and if you need a reminder 

on how something works or why we did something go back to Example 1 from the Eigenvalues 

and Eigenfunctions section for a reminder. 

 We’ve got three cases to deal with so let’s get going. 

 

In this case we know the solution to the differential equation is, 

                                            

 Applying the first boundary condition gives, 

                                                              

 Now applying the second boundary condition, and using the above result of course, gives, 

                                                     

 Now, we are after non-trivial solutions and so this means we must have, 

                           

 The positive eigenvalues and their corresponding eigenfunctions of this boundary value problem 

http://tutorial.math.lamar.edu/Classes/DE/BVPEvals.aspx#BVPFourier_Eval_Ex1
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are then, 

                     

Note that we don’t need the  in the eigenfunction as it will just get absorbed into another 

constant that we’ll be picking up later on. 

 

The solution to the differential equation in this case is, 

                                                            

 Applying the boundary conditions gives, 

                   

 So, in this case the only solution is the trivial solution and so  is not an eigenvalue for this 

boundary value problem. 

  

Here the solution to the differential equation is, 

                                        

 Applying the first boundary condition gives, 

                                                              

and applying the second gives, 

                                                   

So, we are assuming   and so  and this means .   We therefore 

we must have  and so we can only get the trivial solution in this case. 

 Therefore, there will be no negative eigenvalues for this boundary value problem. 
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The complete list of eigenvalues and eigenfunctions for this problem are then, 

                     

 Now let’s solve the time differential equation, 

                                                              

and note that even though we now know  we’re not going to plug it in quite yet to keep the 

mess to a minimum.  We will however now use  to remind us that we actually have an infinite 

number of possible values here. 

 This is a simple linear (and separable for that matter) 1
st
 order differential equation and so we’ll 

let you verify that the solution is, 

                                                    

 Now that we’ve gotten both of the ordinary differential equations solved we can finally write 

down a solution.  Note however that we have in fact found infinitely many solutions since there 

are infinitely many solutions (i.e. eigenfunctions) to the spatial problem. 

 Our product solution are then, 

                                 

 denoted the product solution  to acknowledge that each value of n will yield a different 

solution.  Also note that we’ve changed the c in the solution to the time problem to  to 

denote the fact that it will probably be different for each value of n as well and because had we 

kept the  with the eigenfunction we’d have absorbed it into the c to get a single constant in our 

solution. 

 So, there we have it.  The function above will satisfy the heat equation and the boundary 

condition of zero temperature on the ends of the bar.   

 The problem with this solution is that it simply will not satisfy almost every possible initial 

condition we could possibly want to use.  That does not mean however, that there aren’t at least a 

few that it will satisfy as the next example illustrates.  
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Example 2  Solve the following heat problem for the given initial conditions. 

                                

(a)  

(b)  

Solution 

a) This is actually easier than it looks like.  All we need to do is choose  and  in the 

product solution above to get, 

                                                   

and we’ve got the solution we need.  This is a product solution for the first example and so 

satisfies the partial differential equation and boundary conditions and will satisfy the initial 

condition since plugging in  will drop out the exponential. 

 (b) This is almost as simple as the first part.  Recall from the Principle of Superposition that if 

we have two solutions to a linear homogeneous differential equation (which we’ve got here) then 

their sum is also a solution.  So, all we need to do is choose n and  as we did in the first part to 

get a solution that satisfies each part of the initial condition and then add them up.  Doing this 

gives, 

                        

 We’ll leave it to you to verify that this does in fact satisfy the initial condition and the boundary 

conditions. 

 So, we’ve seen that our solution from the first example will satisfy at least a small number of 

highly specific initial conditions.   

 Now, let’s extend the idea out that we used in the second part of the previous example a little to 

see how we can get a solution that will satisfy any sufficiently nice initial condition.  The 
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Principle of Superposition is, of course, not restricted to only two solutions.  For instance the 

following is also a solution to the partial differential equation. 

 
 

  

and notice that this solution will not only satisfy the boundary conditions but it will also satisfy 

the initial condition, 

 
 

  

 Let’s extend this out even further and take the limit as .  Doing this our solution now 

becomes, 

 
 

  

 This solution will satisfy any initial condition that can be written in the form, 

 
 

  

 This may still seem to be very restrictive, but the series on the right should look awful familiar 

to you after the previous chapter.  The series on the left is exactly the Fourier sine series we 

looked at in that chapter.  Also recall that when we can write down the Fourier sine series for any 

piecewise smooth function on . 

 So, provided our initial condition is piecewise smooth after applying the initial condition to our 

solution we can determine the  as if we were finding the Fourier sine series of initial 

condition.  So we can either proceed as we did in that section and use the orthogonality of the 

sines to derive them or we can acknowledge that we’ve already done that work and know that 

coefficients  are given by, 

 
 

  

 So, we finally can completely solve a partial differential equation.  
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Example 3  Solve the following BVP. 

                                

Solution 

There isn’t really all that much to do here as we’ve done most of it in the examples and 

discussion above. 

 First, the solution is, 

                                              

The coefficients are given by, 

                  

 If we plug these in we get the solution, 

                                         

  While the example itself was very simple, it was only simple because of all the work that we 

had to put into developing the ideas that even allowed us to do this.  Because of how “simple” it 

will often be to actually get these solutions we’re not actually going to do anymore with specific 

initial conditions.  We will instead concentrate on simply developing the formulas that we’d be 

required to evaluate in order to get an actual solution. 

 So, having said that let’s move onto the next example.  In this case we’re going to again look at 

the temperature distribution in a bar with perfectly insulated boundaries.  We are also no longer 

going to go in steps.  We will do the full solution as a single example and end up with a solution 

that will satisfy any piecewise smooth initial condition.  

 

http://tutorial.math.lamar.edu/Classes/DE/TheHeatEquation.aspx#PDE_HeatEqn_PerfectInsulated
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Example 4  Find a solution to the following partial differential equation. 

                               

Solution 

We applied separation of variables to this problem in Example 2 of the previous section.  So, 

after assuming that our solution is in the form, 

                                                         

and applying separation of variables we get the following two ordinary differential equations that 

we need to solve. 

                           

 We solved the boundary value problem in Example 2 of the Eigenvalues and Eigenfunctions 

section of the previous chapter for  so as with the first example in this section we’re not 

going to put a lot of explanation into the work here.  If you need a reminder on how this works 

go back to the previous chapter and review the example we worked there.  Let’s get going on the 

three cases we’ve got to work for this problem. 

 

The solution to the differential equation is, 

                                            

 Applying the first boundary condition gives, 

                               

 The second boundary condition gives, 

http://tutorial.math.lamar.edu/Classes/DE/SeparationofVariables.aspx#PDE_SepVariables_Ex2
http://tutorial.math.lamar.edu/Classes/DE/BVPEvals.aspx#BVPFourier_Eval_Ex2
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 Recall that   and so we will only get non-trivial solutions if we require that, 

                     

 The positive eigenvalues and their corresponding eigenfunctions of this boundary value problem 

are then, 

                           

 

 

The general solution is 

                                                         

 Applying the first boundary condition gives, 

                                                            

 Using this the general solution is then, 

                                                                 

and note that this will trivially satisfy the second boundary condition.  Therefore  is an 

eigenvalue for this BVP and the eigenfunctions corresponding to this eigenvalue is, 

                                                                 

 

The general solution here is, 
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Applying the first boundary condition gives, 

                                           

 The second boundary condition gives, 

                                             

We know that  and so .  Therefore we must have  and so, this 

boundary value problem will have no negative eigenvalues. 

 So, the complete list of eigenvalues and eigenfunctions for this problem is then, 

                           

and notice that we get the  eigenvalue and its eigenfunction if we allow  in the first 

set and so we’ll use the following as our set of eigenvalues and eigenfunctions. 

                         

 The time problem here is identical to the first problem we looked at so, 

                                                           

 Our product solutions will then be, 

                         

and the solution to this partial differential equation is, 
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 If we apply the initial condition to this we get, 

                                             

and we can see that this is nothing more than the Fourier cosine series for  on  and 

so again we could use the orthogonality of the cosines to derive the coefficients or we could 

recall that we’ve already done that in the previous chapter and know that the coefficients are 

given by,  

  

                                       

  

The last example that we’re going to work in this section is a little different from the first two.  

We are going to consider the temperature distribution in a thin circular ring.  We will consider 

the lateral surfaces to be perfectly insulated and we are also going to assume that the ring is thin 

enough so that the temperature does not vary with distance from the center of the ring. 

 So, what does that leave us with?  Let’s set  as shown below and then let x be the arc length 

of the ring as measured from this point.   

 

 We will measure x as positive if we move to the right and negative if we move to the left of 

.  This means that at the top of the ring we’ll meet where  (if we move to the right) and 

 (if we move to the left).  By doing this we can consider this ring to be a bar of length 2L 

and the heat equation that we developed earlier in this chapter will still hold. 

http://tutorial.math.lamar.edu/Classes/DE/FourierCosineSeries.aspx
http://tutorial.math.lamar.edu/Classes/DE/TheHeatEquation.aspx#PDE_HeatEqn_1D
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 At the point of the ring we consider the two “ends” to be in perfect thermal contact.  This 

means that at the two ends both the temperature and the heat flux must be equal.  In other words 

we must have, 

 
 

  

If you recall from the section in which we derived the heat equation we called these periodic 

boundary conditions.  So, the problem we need to solve to get the temperature distribution in this 

case is, 

  

Example 5  Find a solution to the following partial differential equation. 

                   

Solution 

We applied separation of variables to this problem in Example 3 of the previous section.  So, if 

we assume the solution is in the form, 

                                                         

we get the following two ordinary differential equations that we need to solve. 

               

 As we’ve seen with the previous two problems we’ve already solved a boundary value problem 

like this one back in the Eigenvalues and Eigenfunctions section of the previous chapter, 

Example 3 to be exact with .  So, if you need a little more explanation of what’s going on 

here go back to this example and you can see a little more explanation. 

 We again have three cases to deal with here. 

 

The general solution to the differential equation is, 

http://tutorial.math.lamar.edu/Classes/DE/TheHeatEquation.aspx
http://tutorial.math.lamar.edu/Classes/DE/SeparationofVariables.aspx#PDE_SepVariables_Ex3
http://tutorial.math.lamar.edu/Classes/DE/BVPEvals.aspx#BVPFourier_Eval_Ex3


55 

 

                                            

 Applying the first boundary condition and recalling that cosine is an even function and sine is an 

odd function gives us, 

                        

 At this stage we can’t really say anything as either  or sine could be zero.  So, let’s apply 

the second boundary condition and see what we get. 

          

We get something similar.  However notice that if  then we would be forced to 

have  and this would give us the trivial solution which we don’t want. 

 This means therefore that we must have  which in turn means (from work in our 

previous examples) that the positive eigenvalues for this problem are, 

                                             

 Now, there is no reason to believe that  or .  All we know is that they both can’t be 

zero and so that means that we in fact have two sets of eigenfunctions for this problem 

corresponding to positive eigenvalues.  They are, 

                     

 

The general solution in this case is, 
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Applying the first boundary condition gives, 

                                

 The general solution is then, 

                                                                 

and this will trivially satisfy the second boundary condition.  Therefore  is an eigenvalue 

for this BVP and the eigenfunctions corresponding to this eigenvalue is, 

                                                                 

 

For this final case the general solution here is, 

                                        

 Applying the first boundary condition and using the fact that hyperbolic cosine is even and 

hyperbolic sine is odd gives, 

               

Now, in this case we are assuming that  and so .  This turn tells us that 

.  We therefore must have . 

 Let’s now apply the second boundary condition to get, 
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By our assumption on  we again have no choice here but to have  and so for this boundary 

value problem there are no negative eigenvalues. 

 Summarizing up then we have the following sets of eigenvalues and eigenfunctions and note 

that we’ve merged the  case into the cosine case since it can be here to simplify things 

up a little. 

                         

 The time problem is again identical to the two we’ve already worked here and so we have, 

                                                           

 Now, this example is a little different from the previous two heat problems that we’ve looked 

at.  In this case we actually have two different possible product solutions that will satisfy the 

partial differential equation and the boundary conditions.  They are, 

                         

 The Principle of Superposition is still valid however and so a sum of any of these will also be a 

solution and so the solution to this partial differential equation is, 

                        

 If we apply the initial condition to this we get, 
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and just as we saw in the previous two examples we get a Fourier series.  The difference this 

time is that we get the full Fourier series for a piecewise smooth initial condition on .  

As noted for the previous two examples we could either rederive formulas for the coefficients 

using the orthogonality of the sines and cosines or we can recall the work we’ve already done.  

There’s really no reason at this point to redo work already done so the coefficients are given by, 

                                 

 Note that this is the reason for setting up x as we did at the start of this problem.  A full Fourier 

series needs an interval of  whereas the Fourier sine and cosines series we saw in the 

first two problems need . 

  

Heat Equation with Non-Zero Temperature Boundaries 

In this section we want to expand one of the cases from the previous section a little bit.  In the 

previous section we look at the following heat problem. 

 

 

  

 Now, there is nothing inherently wrong with this problem, but the fact that we’re fixing the 

temperature on both ends at zero is a little unrealistic.  The other two problems we looked at, 

insulated boundaries and the thin ring, are a little more realistic problems, but this one just isn’t 

all that realistic so we’d like to extend it a little. 

 What we’d like to do in this section is instead look at the following problem. 

 

 

(1) 

http://tutorial.math.lamar.edu/Classes/DE/FourierSeries.aspx
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 In this case we’ll allow the boundaries to be any fixed temperature,  or .  The problem here 

is that separation of variables will no longer work on this problem because the boundary 

conditions are no longer homogeneous.  Recall that separation of variables will only work if both 

the partial differential equation and the boundary conditions are linear and homogeneous.  So, 

we’re going to need to deal with the boundary conditions in some way before we actually try and 

solve this.   

  

Luckily for us there is an easy way to deal with them.  Let’s consider this problem a little bit.  

There are no sources to add/subtract heat energy anywhere in the bar.  Also our boundary 

conditions are fixed temperatures and so can’t change with time and we aren’t prescribing a heat 

flux on the boundaries to continually add/subtract heat energy.  So, what this all means is that 

there will not ever be any forcing of heat energy into or out of the bar and so while some heat 

energy may well naturally flow into our out of the bar at the end points as the temperature 

changes eventually the temperature distribution in the bar should stabilize out and no longer 

depend on time. 

 Or, in other words it makes some sense that we should expect that as  our temperature 

distribution,  should behave as, 

 
 

  

where  is called the equilibrium temperature.  Note as well that is should still satisfy the 

heat equation and boundary conditions.  It won’t satisfy the initial condition however because it 

is the temperature distribution as  whereas the initial condition is at .  So, the 

equilibrium temperature distribution should satisfy, 

 
 

(2) 

  

This is a really easy 2
nd

 order ordinary differential equation to solve.  If we integrate twice we 

get, 

  

  

and applying the boundary conditions (we’ll leave this to you to verify) gives us, 
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 What does this have to do with solving the problem given by (1) above?  We’ll let’s define the 

function, 

  
 

(3) 

where  is the solution to (1) and  is the equilibrium temperature for (1).   

  

Now let’s rewrite this as, 

  
 

  

and let’s take some derivatives. 

 
 

  

 In both of these derivatives we used the fact that  is the equilibrium temperature and so is 

independent of time t and must satisfy the differential equation in (2). 

What this tells us is that both  and  must satisfy the same partial differential 

equation.  Let’s see what the initial conditions and boundary conditions would need to be for 

. 

 

 

  

 So, the initial condition just gets potentially messier, but the boundary conditions are now 

homogeneous!  The partial differential equation that  must satisfy is, 

 

 

  

 We saw how to solve this in the previous section and so we the solution is, 

  

 

  

http://tutorial.math.lamar.edu/Classes/DE/HeatEqnNonZero.aspx#ZEqnNum497179
http://tutorial.math.lamar.edu/Classes/DE/HeatEqnNonZero.aspx#ZEqnNum497179
http://tutorial.math.lamar.edu/Classes/DE/HeatEqnNonZero.aspx#ZEqnNum497179
http://tutorial.math.lamar.edu/Classes/DE/HeatEqnNonZero.aspx#ZEqnNum499950
http://tutorial.math.lamar.edu/Classes/DE/SolvingHeatEquation.aspx#PDE_HeatEqn_Soln1
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where the coefficients are given by, 

 
 

  

 The solution to (1) is then, 

  

 

  

and the coefficients are given above. 

Laplace’s Equation 

The next partial differential equation that we’re going to solve is the 2-D Laplace’s equation, 

 
 

  

 A natural question to ask before we start learning how to solve this is does this equation come 

up naturally anywhere?  The answer is a very resounding yes!  If we consider the 2-D heat 

equation, 

 
 

  

 We can see that Laplace’s equation would correspond to finding the equilibrium solution (i.e. 

time independent solution) if there were not sources.  So, this is an equation that can arise from 

physical situations. 

 How we solve Laplace’s equation will depend upon the geometry of the 2-D object we’re 

solving it on.  Let’s start out by solving it on the rectangle given by , .  For 

this geometry Laplace’s equation along with the four boundary conditions will be, 

                                                                        

 

 

(1) 

  

http://tutorial.math.lamar.edu/Classes/DE/HeatEqnNonZero.aspx#ZEqnNum497179
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Example 1  Find a solution to the following partial differential equation. 

                                            

Solution 

We’ll start by assuming that our solution will be in the form, 

                                                       

and then recall that we performed separation of variables on this problem (with a small change in 

notation) back in Example 5 of the Separation of Variables section.  So from that problem we 

know that separation of variables yields the following two ordinary differential equations that 

we’ll need to solve. 

                            

 Note that in this case, unlike the heat equation we must solve the boundary value problem first.  

Without knowing what  is there is no way that we can solve the first differential equation here 

with only one boundary condition since the sign of  will affect the solution.   

 Let’s also notice that we solved the boundary value problem in Example 1 of Solving the Heat 

Equation and so there is no reason to resolve it here.  Taking a change of letters into account the 

eigenvalues and eigenfunctions for the boundary value problem here are, 

                     

 Now that we know what the eigenvalues are let’s write down the first differential equation with 

 plugged in. 

http://tutorial.math.lamar.edu/Classes/DE/SeparationofVariables.aspx#PDE_SepVariables_Ex5
http://tutorial.math.lamar.edu/Classes/DE/SolvingHeatEquation.aspx#PDE_HeatEqn_Ex1
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Because the coefficient of  in the differential equation above is positive we know that a 

solution to this is, 

                                          

 However, this is not really suited for dealing with the  boundary condition.  So, let’s 

also notice that the following is also a solution. 

                                 

 You should verify this by plugging this into the differential equation and checking that it is in 

fact a solution.  Applying the lone boundary condition to this “shifted” solution gives, 

                                                              

 The solution to the first differential equation is now, 

                                                  

and this is all the farther we can go with this because we only had a single boundary condition.  

That is not really a problem however because we now have enough information to form the 

product solution for this partial differential equation. 

A product solution for this partial differential equation is, 

                     

 The Principle of Superposition then tells us that a solution to the partial differential equation is, 
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and this solution will satisfy the three homogeneous boundary conditions. 

 To determine the constants all we need to do is apply the final boundary condition. 

                        

 

 Now, in the previous problems we’ve done this has clearly been a Fourier series of some kind 

and in fact it still is.  The difference here is that the coefficients of the Fourier sine series are 

now, 

                                                          

instead of just .  We might be a little more tempted to use the orthogonality of the sines to 

derive formulas for the , however we can still reuse the work that we’ve done previously to get 

formulas for the coefficients here. 

 Remember that a Fourier sine series is just a series of coefficients (depending on n) times a 

sine.  We still have that here, except the “coefficients” are a little messier this time that what we 

saw when we first dealt with Fourier series.  So, the coefficients can be found using exactly the 

same formula from the Fourier sine series section of a function on  we just need to be 

careful with the coefficients.   

            

 The formulas for the  are a little messy this time in comparison to the other problems we’ve 

done but they aren’t really all that messy.                                         

  

Let’s do one of the other problems here so we can make a couple of points. 

 

Example 2  Find a solution to the following partial differential equation. 

http://tutorial.math.lamar.edu/Classes/DE/FourierSineSeries.aspx
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Solution 

Okay, for the first time we’ve hit a problem where we haven’t previous done the separation of 

variables so let’s go through that.  We’ll assume the solution is in the form, 

                                                       

 We’ll apply this to the homogeneous boundary conditions first since we’ll need those once we 

get reach the point of choosing the separation constant.  We’ll let you verify that the boundary 

conditions become, 

                             

 Next, we’ll plug the product solution into the differential equation. 

                                    

 Now, at this point we need to choose a separation constant.  We’ve got two homogeneous 

boundary conditions on h so let’s choose the constant so that the differential equation for h yields 

a familiar boundary value problem so we don’t need to redo any of that work.  In this case, 

unlike the  case, we’ll need . 

This is a good problem in that is clearly illustrates that sometimes you need  as a separation 

constant and at other times you need .  Not only that but sometimes all it takes is a small 

change in the boundary conditions it force the change. 

 So, after adding in the separation constant we get, 

                                                      

http://tutorial.math.lamar.edu/Classes/DE/SeparationofVariables.aspx#PDE_SepVariables_Ex5
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and two ordinary differential equations that we get from this case (along with their boundary 

conditions) are, 

                                     

 Now, as we noted above when we were deciding which separation constant to work with we’ve 

already solved the first boundary value problem.  So, the eigenvalues and eigenfunctions for the 

first boundary value problem are, 

                     

 The second differential equation is then, 

                                                         

 Because the coefficient of the  is positive we know that a solution to this is, 

                                         

 In this case, unlike the previous example, we won’t need to use a shifted version of the solution 

because this will work just fine with the boundary condition we’ve got for this.  So, applying the 

boundary condition to this gives, 

                                                              

and this solution becomes, 

                                                      

 The product solution for this case is then, 
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 The solution to this partial differential equation is then, 

                                        

 Finally, let’s apply the nonhomogeneous boundary condition to get the coefficients for this 

solution. 

                                 

 As we’ve come to expect this is again a Fourier sine (although it won’t always be a sine) series 

and so using previously done work instead of using the orthogonality of the sines to we see that, 

                 

We’ve worked two of the four cases that would need to be solved in order to completely solve 

(1).  As we’ve seen each case was very similar and yet also had some differences.  We saw the 

use of both separation constants and that sometimes we need to use a “shifted” solution in order 

to deal with one of the boundary conditions. 

 Before moving on let’s note that we used prescribed temperature boundary conditions here, but 

we could just have easily used prescribed flux boundary conditions or a mix of the two.  No 

matter what kind of boundary conditions we have they will work the same. 

  

As a final example in this section let’s take a look at solving Laplace’s equation on a disk of 

radius a and a prescribed temperature on the boundary.  Because we are now on a disk it makes 

sense that we should probably do this problem in polar coordinates and so the first thing we need 

to so do is write down Laplace’s equation in terms of polar coordinates. 

 Laplace’s equation in terms of polar coordinates is, 

  

 

  

 This is a lot more complicated than the Cartesian form of Laplace’s equation and it will add in a 

few complexities to the solution process, but it isn’t as bad as it looks.  The main problem that 

we’ve got here really is that fact that we’ve got a single boundary condition.  Namely, 

http://tutorial.math.lamar.edu/Classes/DE/LaplacesEqn.aspx#ZEqnNum963522
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 This specifies the temperature on the boundary of the disk.  We are clearly going to need three 

more conditions however since we’ve got a 2
nd

 derivative in both r and .   

 When we solved Laplace’s equation on a rectangle we used conditions at the end points of the 

range of each variable and so it makes some sense here that we should probably need the same 

kind of conditions here as well.  The range on our variables here are, 

  

  

 Note that the limits on  are somewhat arbitrary here and are chosen for convenience here.  Any 

set of limits that covers the complete disk will work, however as we’ll see with these limits we 

will get another familiar boundary value problem arising.  The best choice here is often not 

known until the separation of variables is done.  At that point you can go back and make your 

choices. 

 We now need conditions for  and .  First, note that Laplace’s equation in terms of 

polar coordinates is singular at  (i.e. we get division by zero).  However, we know from 

physical considerations that the temperature must remain finite everywhere in the disk and so 

let’s impose the condition that, 

  

  

 This may seem like an odd condition and it definitely doesn’t conform to the other boundary 

conditions that we’ve seen to this point, but it will work out for us as we’ll see. 

 Now, for boundary conditions for  we’ll do something similar to what we did for the 1-D head 

equation on a thin ring.  The two limits on  are really just different sides of a line in the disk 

and so let’s use the periodic conditions there.  In other words, 

 

 With all of this out of the way let’s solve Laplace’s equation on a disk of radius a.  

Example 3  Find a solution to the following partial differential equation. 

                               

http://tutorial.math.lamar.edu/Classes/DE/SolvingHeatEquation.aspx#PDE_HeatEqn_Ex5
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Solution 

In this case we’ll assume that the solution will be in the form, 

                                                        

 Plugging this into the periodic boundary conditions gives, 

                                 

 Now let’s plug the product solution into the partial differential equation. 

                                

 This is definitely more of a mess that we’ve seen to this point when it comes to separating 

variables.  In this case simply dividing by the product solution, while still necessary, will not be 

sufficient to separate the variables.  We are also going to have to multiply by  to completely 

separate variables.  So, doing all that, moving each term to one side of the equal sign and 

introduction a separation constant gives, 

                                                  

 We used  as the separation constant this time to get the differential equation for  to match up 

with one we’ve already done. 

 The ordinary differential equations we get are then, 

               

 Now, we solved the boundary value problem above in Example 3 of the Eigenvalues and 

Eigenfunctions section of the previous chapter and so there is no reason to redo it here.  The 

eigenvalues and eigenfunctions for this problem are, 

http://tutorial.math.lamar.edu/Classes/DE/BVPEvals.aspx#BVPFourier_Eval_Ex3
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 Plugging this into the first ordinary differential equation and using the product rule on the 

derivative we get, 

                                                    

 This is an Euler differential equation and so we know that solutions will be in the form 

 provided p is a root of, 

              

 So, because the  case will yield a double root, versus two real distinct roots if  we 

have two cases here.  They are, 

                                       

 Now we need to recall the condition that .  Each of the solutions above will have 

 as  Therefore in order to meet this boundary condition we must have 

. 

 Therefore, the solution reduces to, 

                                           

and notice that with the second term gone we can combine the two solutions into a single 

solution. 

 So, we have two product solutions for this problem.  They are, 

http://tutorial.math.lamar.edu/Classes/DE/EulerEquations.aspx
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 Our solution is then the sum of all these solutions or, 

                                    

 Applying our final boundary condition to this gives, 

                             

 This is a full Fourier series for  on the interval , i.e. .  Also note that once 

again the “coefficients” of the Fourier series are a little messier than normal, but not quite as 

messy as when we were working on a rectangle above.  We could once again use the 

orthogonality of the sines and cosines to derive formulas for the  and  or we could just use 

the formulas from the Fourier series section with  to get, 

                           

 Upon solving for the coefficients we get, 

                           

 Prior to this example most of the separation of variable problems tended to look very similar and 

it is easy to fall in to the trap of expecting everything to look like what we’d seen earlier.  With 

this example we can see that the problems can definitely be different on occasion so don’t get too 

locked into expecting them to always work in exactly the same way. 

http://tutorial.math.lamar.edu/Classes/DE/FourierSeries.aspx
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 Before we leave this section let’s briefly talk about what you’d need to do on a partial disk.  The 

periodic boundary conditions above were only there because we had a whole disk.  What if we 

only had a disk between say .  

 When we’ve got a partial disk we now have two new boundaries that we not present in the 

whole disk and the periodic boundary conditions will no longer make sense.  The periodic 

boundary conditions are only used when we have the two “boundaries” in contact with each 

other and that clearly won’t be the case with a partial disk. 

  

So, if we stick with prescribed temperature boundary conditions we would then have the 

following conditions 

 

 

  

 Also note that in order to use separation of variables on these conditions we’d need to have 

 to make sure they are homogeneous. 

 As a final note we could just have easily used flux boundary conditions for the last two if we’d 

wanted to.  The boundary value problem would be different, but outside of that the problem 

would work in the same manner. 

 We could also use a flux condition on the  boundary but we haven’t really talked yet about 

how to apply that kind of condition to our solution.  Recall that this is the condition that we apply 

to our solution to determine the coefficients.  It’s not difficult to use we just haven’t talked about 

this kind of condition yet.  We’ll be doing that in the next section. 

Vibrating String 

This will be the final partial differential equation that we’ll be solving in this chapter.  In this 

section we’ll be solving the 1-D wave equation to determine the displacement of a vibrating 

string.  There really isn’t much in the way of introduction to do here so let’s just jump straight 

into the example. 

  

Example 1  Find a solution to the following partial differential equation. 
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Solution 

One of the main differences here that we’re going to have to deal with is the fact that we’ve now 

got two initial conditions.  That is not something we’ve seen to this point, but will not be all that 

difficult to deal with when the time rolls around. 

 We’ve already done the separation of variables for this problem, but let’s go ahead and redo it 

here so we can say we’ve got another problem almost completely worked out.   

 So, let’s start off with the product solution. 

                                                         

 Plugging this into the two boundary conditions gives, 

                                               

 Plugging the product solution into the differential equation, separating and introducing a 

separation constant gives, 

                                           

  

We moved the  to the left side for convenience and chose  for the separation constant so the 

differential equation for  would match a known (and solved) case. 

  

The two ordinary differential equations we get from separation of variables are then, 
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We solved the boundary value problem above in Example 1 of the Solving the Heat Equation 

section of this chapter and so the eigenvalues and eigenfunctions for this problem are, 

                     

 The first ordinary differential equation is now, 

                                                         

and because the coefficient of the h is clearly positive the solution to this is, 

                                           

Because there is no reason to think that either of the coefficients above are zero we then get two 

product solutions, 

                           

 The solution is then, 

                  

 Now, in order to apply the second initial condition we’ll need to differentiate this with respect to 

t so, 

            

http://tutorial.math.lamar.edu/Classes/DE/SolvingHeatEquation.aspx#PDE_HeatEqn_Ex1


75 

 

 If we now apply the initial conditions we get, 

    

 Both of these are Fourier sine series.  The first is for  on  while the second is for 

 on  with a slightly messy coefficient.  As in the last few sections we’re faced with 

the choice of either using the orthogonality of the sines to derive formulas for  and  or we 

could reuse formula from previous work. 

 It’s easier to reuse formulas so using the formulas form the Fourier sine series section we get, 

                                 

 Upon solving the second one we get, 

                                   

 So, there is the solution to the 1-D wave equation and with that we’ve solved the final partial 

differential equation in this chapter. 

Two dimensional wave Equation: 

Examples of two dimensional waves:  

Motion of a stretched elastic membrane such as a drumhead. 

Two dimensional wave equation: 

 
   

   
   (

   

   
 

   

   )                where    
 

 
 

Solution of two dimensional wave equation (Using Double Fourier Series): 

We know the two dimensional wave equation is  

 
   

   
   (

   

   
 

   

   )                where    
 

 
  …………………………….………….[1 

http://tutorial.math.lamar.edu/Classes/DE/FourierSineSeries.aspx
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And let its solution be  (     ) 

And the boundary conditions are  

     on the boundary ofd the membrane for all       ……………………………………….[2 

The two initial conditions  

  (     )   (   )   (where  (   ) will be the given initial displacement)  ………….[3 

 
  

  
|
   

  (   ) where  (   ) will be the given initial velocity ………………………..[4 

The solution  (     )means the displacement of the point (x,y) of the membrane from rest 

(   )at time  . 

Step-1:  

Let the solution is  (     )   (   ) ( ) ……………………………………………….………….[5 

Substituting the equation (5) in wave equation(1) we have 

 (   )
   

   
   (         ) where subscripts denotes the partial derivatives. 

Dividing       to both side we get  

   

   

   
 

 

 
(       )  as it is a proportionality we can consider as a constant 

 

   

   

   
 

 

 
(       )       say 

 

This gives two equations  one is for time function  ( )  

i.e.      
   

                        where       ………………………………………………….…..[6 

and other is the amplitude function  (   ) 

i.e.                       (It is called as Helmholtz Equation)  …………………..[7 

Now let us solve the equation (7) by variable separation method. 

Let     (   )   ( ) ( )   …………………………………………………………………………………..[8 

Substituting equation (8) in equation (7) we get  

   

   
   ( 

   

   
     ) 

Now dividing HQ in the above equation we get  

 

 
  
   

   
   

 

 
( 

   

   
    ) 

As by this the separation is possible we can consider this as proportional constant as  

 

 
  
   

   
  

 

 
(
   

   
    )      

From this we can yield two ordinary differential equation for H and Q as  

     
   

          ………………………………………………………………………….[9 
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               where             ………………………………………………………….[10 

Step-2 

 The  general solution of equation (9) is      ( )                  

 The general solution of equation (10) is     ( )                   

Where A B C D are constants. which are to be determined due to boundary conditions. 

In two dimensional wave for all time       the deflection  (   )    .That means the 

membrane is not vibrating at the boundary. As solution of  (   )   ( ) ( )   says 

solution about x,y we use the required boundary condition for x and y i.e. 

 ( )                   ( )                  ( )              ( )    

Using this boundary condition in the general solution H(x) we get  

   ( )                      

 ( )                     ( )                        

If we take     then            
  

 
  where m is an integer. Hence   ( )     

   

 
 

In similar fashion we can get solution for   ( ) by using the corresponding boundary 

condition  ( )              ( )    we get      ( )     
   

 
 

Hence the equation (8) reduces to the form  

    (   )    ( )  ( )      
   

 
    

   

 
 for m and n are +ve integer ……………….[11 

As in equation (60 and (100 we have considered       and          then this two gives 

                     √                      √
  

  
 

  

  
   ……………………….………….[12 

Hence using equation (12) in the solution of (6) we get  

   ( )                
         

Hence as per the equation (5) the solution is  

     (     )  (              
        )    

   

 
    

   

 
  ………………………….[13 

Step-3 

 Now using the Fourier series concept and initial velocity and deflection we get 

 (     )  ∑ ∑    (     )  ∑ ∑(              
        )    

   

 
    

   

 
 

 

   

 

   

 

 

   

 

   

 

                                              ……………………………………………[17  

Then for     we have  (     )   ∑ ∑        
   

 
    

   

 
  

   
 
     (   )…………………[18 

Using generalized Euler formula for coefficient     we get 

     
 

  
∫ ∫  (   )   

   

 
    

   

 
    

 

 

 

 
   …………………………………………….[19 

Again using the condition 
  

  
|
   

 we get  

                     
  

  
|
   

 ∑ ∑    
         

   

 
    

   

 
  (   )  

   
 
   ………………………………...[20 

Using generalized Euler formula for coefficient    
   we get 
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∫ ∫  (   )   

   

 
    

   

 
    

 

 

 

 
     …………………………………………………[21 

Ex: Find the vibration of a rectangular membrane of sides a=4ft and b=2ft. if the tension is 

12.5lb/ft, the density is 2.5slugs/ft2, the initial velocity is 0, and he initial displacement is  

   (   )     (     )(     )   

Ans: 

 We know the two dimensional wave equation is  

 (     )  ∑ ∑    (     )  ∑ ∑(              
        )    

   

 
    

   

 
 

 

   

 

   

 

 

   

 

   

 

 

For t=0 initial deflection is given as  (   )     (     )(     )   and initial 

velocity is zero.. So    
    Hence we have to find only     

    
 

  
∫ ∫  (   )   

   

 
    

   

 
    

 

 

 

 

 

 
 

   
∫ ∫    (     )(     )   

   

 
    

   

 
    

 

 

 

 

 

 
 

  
∫ (     )

 

 

    
   

 
  ∫ (     )

 

 

    
   

 
   

Integrating both the integrals by parts we get  

The 1st integral is             
   

    
   (  )  

   

    
   where m is odd 

The 2nd integral is              
  

    
   (  )  

  

    
     where n is odd 

Hence                
 

  
 

   

     
  

       and 

       √
  

  
 

  

  
    √

  

  
 

  

  
 

Again we can get the value of c from the formula    
 

 
 = 

    

   
=5 

Hence the solution is  

 (     )  
       

  
∑ ∑

 

                      cos (  √
  

  
 

  

  
  )t sin    

   

 
    

   

 
 

Ex: 

Laplacian in polar coordinates: 

In the discussion of two dimensional wave equation we have considered the rectangular 

membrane with the boundary condition. Sometimes we come across the vibrating circular 

membrane like drum heads. To discuss about circular membrane it is better to consider polar 

coordinate form of the equation. 

Conversion of laplacian to polar form: 

The laplacian is         
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Let                                  …………………………………………………………………[* 

 
  

  
 

  

  

  

  
 

  

  

  

  
 

                               as x is a function of two variables   and   

Similarly again differentiating    with respect to x we get  

                     (    )  (     )    

=(  )      (  )       (  )      (  )  

=(
 

  
  

  

  
 

 

  
  

  

  
)          (

 

  
  

  

  
 

 

  
  

  

  
)           

=(           )         (           )         ………..[1 

The above equation contains                                        which are to be determined. 

From the parametric form given in (*) we get   √        and         

 
 

Hence 
  

  
    

 

√     
 

 

 
   and    

 

  (
 

 ⁄ )
 ( 

 

  )   
 

  
 

Again differentiating the above two equation we get 

            
     

  
 

 

 
 

  

  
 

  

  
      and                 ( 

 

  )    
   

  
 

Now substituting all these values in equation (1) and assuming continuity of the 1st and 2nd 

partial derivatives we have          we get  

                 
  

  
     

  

  
    

  

  
    

  

  
    

  

  
    ……………………………………….[2 

In similar manner again we can find  

                   
  

  
     

  

  
    

  

  
    

  

  
    

  

  
      …………………………..[3 

Then by adding equation (2) and (3) we get the laplacian of u in polar coordinates as  

                                
   

   
 

 

 

  

  
 

 

  

   

   
     …………………………………………………………………[4 

Q: Show that the Laplacian of u in cylindrical coordinate is  

          
   

   
 

 

 

  

  
 

 

  

   

   
 

   

   
   

                                    =    
 

 
   

 

  
        

Q: Show that an alternative form of laplacian in polar coordinate is  

                                   
 

 

 

  
( 

  

  
)  

 

  

   

   
    

Circular Membrane ( Use of Fourier-Bessel Series): 
Two dimensional wave equation in polar form is  

 
   

   
   (

   

   
 

 

 

  

  
 

 

  

   

   ) 

It’s solution means we have to find the deflection  (   ) that are radially symmetric ,that do 

not depend on  . So the equation reduces to  
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   (

   

   
 

 

 

  

  
) ..………………………………………………………….….……….[1 

The boundary condition is  

                              (   )                           for all        …………………………………………………………[2 

                              (   )   ( )                 initial deflection f(r)   ……………………………….….…………[3 

                             
  

   
|
   

  ( )               where initial velocity g(r)(r)   ……………………….………….[4 

It’s solution is  (   )    ( )  ( )  (                  )   (   )   ………….……….[5 

 Where                  
 

    
 (  )

∫   ( )  (
  

 
 )   

 

 
 

Ex . Find the vibration of a circular drumhead of radius 1ft and density 2 slugs/ft2 if the 

tension is 8lb/ft, the initial velocity is 0, and initial displacement is  ( )      . 

Ans    
 

 
  =

 

 
=4 Also       Since the initial velocity is o and R=1 

                             Now    
 

    
 (  )

∫   ( )  (
  

 
 )   

 

 
 

                                               =  
 

  
 (  )

∫  (    )  (   )  
 

 
 

                                             =  
   (  )

  
   

 (  )
 

 

  
   (  )

 

    (  )  
 

  
  (  )    (  )  

 

  
  (  )   

Laplace’s Equation in cylindrical and Spherical coordinates: 
Laplace equation in in three dimensional coordinate system is  

                         
   

   
 

   

   
 

   

   
      …………………………………………………….[1 

                                               

This equation has great application in physics and engineering. The theory of solution of 

this equation is called potential theory. The solution of equation (1) that have continuous 2nd 

order partial derivatives are called harmonic function. Generally this equation come across in 

gravitation, electrostatics, steady state heat flow, and fluid flow. 

Laplacian in cylindrical coordinates: 

In cylindrical coordinate system we consider                                                      

Already we have derived the laplacian in polar coordinate in two dimensional as  

    
   

   
 

 

 

  

  
 

 

  

   

   
 

Then just by adding the component for z coordinate we get laplacian in polar coordinate in 

three dimension as 

                                                       
   

   
 

 

 

  

  
 

 

  

   

   
+
   

   
   …………………………….[2 

Laplacian in Spherical Coordinates: 
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Spherical symmetry (a ball as region T bounded by a sphere S) requires spherical 

coordinates       related to x,y,z by 

                                                 

Then using the chan rule and proceeding as two dimensional case we get the laplacian 

in spherical coordinates is  

    
   

   
 

 

 

  

  
 

 

  

   

   
 

    

  

  

  
 

 

       

   

   
  

This equation can also be written as  

                  
 

  
[

 

  
(    

  
)  

 

    

 

  
(    

  

  
)  

 

     

   

   
]  

Solution of partial Differential equation by laplace Transform. 

Laplace transform can also be used to solve partial differential equation. As Laplace transform is 

defined only for     it can be applied to partial differential equation when one of the 

independent variables ranges over the +ve axis 

Working procedure to solve a PDE by using LT: 

Step-1 take laplace transform with respect to one of the two variables, usually t. This gives an 

ordinary differential equation for the transform of the unknown function. 

Step-2 Solving that ordinary differential equation, obtain the transform of the unknown 

function. 

Step-3 Taking the inverse transform , obtain the solution of the given equation. 

Ex. Solve the PDE by using LT 

  
  

  
   

  

  
           (   )           (   )    

Ans:   

Step-1 Taking the LT of both side we get 

   (
  

  
)   (  

  

  
)   (    )   ……………………………………………………………….[1 

 Let us denote  { (   )}   (   ) and  (
  

  
)  

  

  
 also we use the LT of 

derivatives as  {
  

  
}      (   ) now using all this condition to equation (1) we get  

                           
  

  
   (    )  

  

 
    …………………………………………………………..[2 

   
  

  
         

  

 
  

   
  

  
        (  

 

 
)   ………………………………………………………  [3 

This involves partial differential equation w.r.t only one variable. and hence it is a linear 

differential equation. 

So the integrating factor IF = ∫          
 

So the solution of equation (3) is  

  (  )  ∫(  )  (  
 

 
)     ( )   where c(s) is a constant of integration 
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∫    

   (  
 

 
)     ( ) 

 (  
 

 
)∫    

       ( )  (  
 

 
) (    

  )   ( ) 

   (   )  (  
 

  )       
c(s) …………………………………………………………………[4 

Given that  (   )     { (   )}   { }   (   )  
 

 
 

So equation (4) gives 
 

 
   

 

  
  ( ) 

    ( )  
 

 
   

 

  
  ( )   

 

  
 

Using equation (4) gives   
   

  
      

( 
 

  ) 

     (   )  
   

   
     

 

  

 
 

 
 

 

   
     

   

Taking the inverse laplace transform we get 

                              (   )        (    ) 

COMPLEX NUMBERS AND FUNCTIONS, CONFORMAL MAPPING 

12.1 Complex number, Complex plane 

A complex number is a number that can be expressed in the form a + bi, where a and b are real 

numbers and i is the imaginary unit, that satisfies the equation      , that is,      . In this 

expression, a  is the real part and b is the imaginary part of the complex number. 

The real number a is called the real part of the complex number a + bi; the real number b is called 

the imaginary part of a + bi. The real part of a complex number z is denoted by Re(z) ; the 

imaginary part of a complex number z is denoted by Im(z) . For example, 

The set of all complex numbers is denoted by   or . 

A complex number can be viewed as a point or position vector in a two-dimensional Cartesian 

coordinate system called the complex plane or Argand diagram 

 
Two complex numbers are equal if and only if both their real and imaginary parts are equal.  

The complex conjugate of the complex number z = x + yi is defined to be x − yi. It is 

denoted  or z*. 

Formally, for any complex number z: 

(a+bi) + (c+di) = (a+c) + (b+d)i 

http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Vector_(geometric)
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Complex_plane
http://en.wikipedia.org/wiki/Iff
http://en.wikipedia.org/wiki/Complex_conjugate
http://en.wikipedia.org/wiki/File:Complex_number_illustration.svg
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Example: (3 + 2i) + (1 + 7i) = (4 + 9i) 

(a+bi) - (c+di) = (a-c) + (b-d)i 

Example: (3 + 2i) - (1 + 7i) = (2 -5i) 

(a+bi)(c+di) = (ac-bd) + (ad+bc)i 

Example: (3 + 2i)(1 + 7i) = (3×1 - 2×7) + (3×7 + 2×1)i = -11 + 23i 
    

    
 

(    )(    )

(    )(    )
 

Example  

 

2 + 3i 

 

4 - 5i 

Multiply top and bottom by the conjugate of 4 - 5i : 

    

    
 

(    )(    )

(    )(    )
 

And then back into a + bi form: 
  

  
  

  

  
  

Polar form of a complex numbers, powers and roots 

 Polar Form of a Complex Number 

complex numbers in terms of a distance from the origin and a direction (or angle) from the 

positive horizontal axis. 

 

We find the real (horizontal) and imaginary (vertical) components in terms of r (the length of the 

vector) and θ(the angle made with the real axis): 

From Pythagoras, we have:         and basic trigonometry gives us: 

tan θ=
 

 
 

r is the absolute value (or modulus) of the complex number 

θ is the argument of the complex number. 

Example 1 

Find the polar form and represent graphically the complex number 7−5j. 

Ans)  
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We need to find r and θ. 

  | |  √   (  )  √                         ( )       (
 

 
)       (

  

 
)

           

 

 Fundamental Theorem of Algebra. 

 Let z = r (cos θ + i sin θ) be an arbitrary complex number. Then the n nth roots w of z are each 

of the form 

 w = 
n
√r {cos [(θ + 2πm)/n] + i sin [(θ + 2πm)/n]} 

where m is an integer ranging from 0 to n-1. 

Example 1: Compute the two square roots of i. 

Solution: It is easy to see that i has the polar form cos π/2 + i sin π/2. Thus, by Lemma 6.6.4, its 

square roots are cos π/4 + i sin π/4 = √2/2 + √2/2 i and cos 3π/4 + i sin 3π/4 = -√2/2 - √2/2 i. 
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Example 2Compute the three cube roots of -8. 

Solution: Since -8 has the polar form 8 (cos π + i sin π), its three cube roots have the 

form 
3
√8 {cos[(π + 2πm)/3] + i sin[(π + 2πm)/3]} for m=0, 1, and 2. Thus the roots are 2 (cos π/3 

+ i sin π/3) = 1 + √3 i, 2 (cos π + i sin π) = -2, and 2 (cos 5π/3 + i sin 5π/3) = 1 - √3 i. 

Derivative analytic function 

     Differention   

  Using our imagination, we take our lead from elementary calculus and define the derivative 

of   ( )  at      ,  written    (  )  ,  by   

 

                   , 

 

provided that the limit exists.  If it does, we say that the function    is differentiable at  .  If we 

write  ,   

 

then we can express 

    .   

    If we let    and  ,  then we can use the Leibniz's notation  for the 

derivative:   

 

               .   

Explore the Derivative. 

Example:  Use the limit definition to find the derivative of   .   

 ( )=                        

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Leibniz.html
http://mathfaculty.fullerton.edu/mathews/c2003/analyticfunction/AnalyticFunctionMod/Links/AnalyticFunctionMod_lnk_1.html
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Example 3.2.  Show that the function      is nowhere differentiable. 

   Refer [page no- 667  in kreyszig] 

ANALYTIC FUNCTION 

A function  ( ) is said to be analytic  in a domain D if   ( ) is defined and differentiable at all 

points of D. The function  ( ) is said to be analytic at a point      in D if   ( ) is analytic in a 

neighborhood of    . 

Def (Entire Function).  If   ( )    is analytic on the whole complex plane then    ( )   is said to 

be an entire function. 

        Points of non-analyticity for a function are called singular points.  

Most special functions are analytic (at least in some range of the complex plane). Typical 

examples of analytic functions are: 

1) Any polynomial (real or complex) is an analytic function. This is because if a polynomial 

has degree n, any terms of degree larger than n in its Taylor series expansion must 

immediately vanish to 0, and so this series will be trivially convergent. Furthermore, 

every polynomial is its own Maclaurin series. 

2) The exponential function is analytic. Any Taylor series for this function converges not 

only for x close enough to x0 (as in the definition) but for all values of x (real or complex). 

3) The trigonometric functions, logarithm, and the power functions are analytic on any open 

set of their domain. 

Typical examples of functions that are not analytic are: 

1) The absolute value function when defined on the set of real numbers or complex numbers 

is not everywhere analytic because it is not differentiable at 0.Piecewise defined functions 

(functions given by different formulas in different regions) are typically not analytic where the 
pieces meet. 

2) The complex conjugate function z → z* is not complex analytic, although its restriction 

to the real line is the identity function and therefore real analytic, and it is real analytic as a 

function from R² to R². 

http://en.wikipedia.org/wiki/Special_function
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Exponential_function
http://en.wikipedia.org/wiki/Trigonometric_function
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Exponentiation
http://en.wikipedia.org/wiki/Absolute_value
http://en.wikipedia.org/wiki/Piecewise
http://en.wikipedia.org/wiki/Complex_conjugate
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Cauchy Riemann equation, Laplace equation 

Cauchy-Riemann Equations. 

Recall the definition of the derivative of a function  ( )   at a point      : 

  (  )         
 (     )    (  )  

  
      

 

Denote:                                                             ( )   (   )    (   )   

   where     ,  ,        ,  (   )  and  (   ) are real. 

 

Suppose that       ; thus we have: 

 

 

    

 

 

    

 

 

    

 

 

Suppose that  ; thus we have:  
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Hence we have the so-called Cauchy-Riemann Equations: 

 
which can be wriiten in the following form, with a notation frequently used in Calculus: 

 
   If    ( )   (   )    (   )   is derivable at             , then  and  verify the 

Cauchy-Riemann Equations at  (     ) . 

Example   Let ( )     . As a polynomial function,  ( ) is derivable over the whole of  . 

Let us check the Cauchy-Riemann equations. Denote                  . Then we have: 

 

    

 

It follows that: 

 

    

 

at every point in the plane, i.e. Cauchy-Riemann equations hold everywhere. 

Example    Let  ( )  | |   . If                     then: 

 

    

 

Let us check at which points the Cauchy-Riemann equations are verified. We have: 

 ,  ,  and  .Cauchy-Riemann equations are verified if, and only 

if,  , i.e.  . The only point where  can be differentiable is the origin. 

There is a kind of inverse theorem: 

Theorem   If  ( )   (   )    (   ) verifies the Cauchy-Riemann Formulas at    and if the 

partial derivatives of  and  are continuous at (     ) , the   is derivable at   and 

   (  )    (     )    (     ) . 

Example    Let  ; the function  is derivable at any point and  . 
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If  , then  . Then:  , 

 ,  and  . These partial derivatives verify the C-R equations. 

By that way, we have a new proof of the differentiability of  at every point. 

Example   Let  , for any  . We work as in the previous examples: 

 

    

 

 

We compute the first partial derivatives: 

 

    

 

 

We solve Cauchy-Riemann equations: 

 

    

 

The subset of the plane where  can be differentiable is the union of the two coordinate axes. As the 

first partial derivatives of  and  are continuous at every point in the plane,  is differentiable at 
every point on one of the coordinate axes. 

Cauchy-Riemann equations in polar form: 

Instead of  

 

                                   . 



90 

 

 

 

Geometry of analytic function conformal mapping  

A conformal mapping, also called a conformal map, conformal transformation, angle-preserving 

transformation, or biholomorphic map, is a transformation  that preserves local angles. 

An analytic function is conformal at any point where it has a nonzero derivative. Conversely, any 

conformal mapping of a complex variable which has continuous partial derivatives is analytic.   

 For example, let 

                                                                                                               

the real and imaginary parts then give 

    
    

 

For , 

  

 

 

  

 

 

 

 
 

 

http://mathworld.wolfram.com/Transformation.html
http://mathworld.wolfram.com/Angle.html
http://mathworld.wolfram.com/AnalyticFunction.html
http://mathworld.wolfram.com/Nonzero.html
http://mathworld.wolfram.com/Derivative.html
http://mathworld.wolfram.com/RealNumber.html
http://mathworld.wolfram.com/ImaginaryPart.html
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For , 

    
   

  
 

 
                     

 

 
      

 

This solution consists of two systems of circles, and  is the potential function for two parallel opposite 
charged line charges . 

 

For , 

  

 

) 

  

 

16) 

 
  

 

Exponential function , Trigonometric function, Hyperbolic function, 

logarithimic function 

 The Complex Exponential Function 

http://mathworld.wolfram.com/Circle.html
http://mathworld.wolfram.com/PotentialFunction.html
http://mathworld.wolfram.com/Parallel.html
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    Recall that the real exponential function can be represented by the power 

series  .  Thus it is only natural to define the complex exponential  ,  also 

written as , in the following way: 

Def(ExponentialFunction).  
 The definition of exp(z) 

 .   

    Clearly, this definition agrees with that of the real exponential function when z is a real 

number. 

properties:  The function    is an entire function satisfying the following conditions: 

 

  (i).   ,  using Leibniz notation 

  .   

 

(ii).   ,   i.e.   .   

 

(iii).   If    is a real number, then    

.   

 

The exponential function is a solution to the differential equation    with the initial 

condition  .   
    We now explore some additional properties of 

  .    

 

(i)            ,                                                                                                                                                                    

 for all  z,  provided n is an integer,   

 

(ii)            ,  if and only if  ,  where n  is an integer, and 

 

(iii)            ,  if and only if  ,  for some integer n.   

  

Example 1.  For any integer n, the points    are mapped onto a single 
point   
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in the w plane, as indicated in Figure 1. 

 

Figure 1  The points  in the z plane (i.e., the xy plane) and their image   in the w 
plane (i.e., the uv plane). 

    Let's look at the range of the exponential function.  If , we see from identity  that    can 

never equal zero, as    is never zero, and the cosine and sine functions are never zero at the same 

point.  Suppose, then, that  .  If we write w in its exponential form as  
,  identity  gives 
     

            .   

Using identity , and property     and ,where n is an integer. 

Therefore,  , 

       and   .   

  Solving these equations for x and y,  

yields 
 

             and  , 
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where n is an integer. Thus, for any complex number  ,  there are infinitely many complex 

numbers  such that  .  From the previous equations, we see that the numbers z are   
 

               
        or 

            ,   
 
where n is an integer. Hence 

   

 

    In summary, the transformation  

 maps the complex plane (infinitely often) onto the set of non zero complex numbers. 
    If we restrict the solutions in equation .so that only the principal value of the 

argument,  ,  is used, the transformation   maps the horizontal 

strip  ,  one-to-one and onto the range set  .  This strip is called 
the fundamental period strip and is shown in Figure 2. 

 

            Figure 2  The fundamental period strip for the mapping  .   

    The horizontal line  ,  for     in the z plane, is mapped onto the 

ray     that is inclined at an angle    in the w plane. The vertical 

segment  ,  for    in the z plane, is mapped onto the circle centered at the origin 

with radius    in the w plane.  That is,   .  

Example 2.  Consider a rectangle  , where  

.  Show that the transformation    maps the rectangle  onto a portion of an annular 
region bounded by two rays. 
 
Solution.  The image points in the w plane satisfy the following relationships involving the modulus and 
argument of w:   
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            ,   and 
 

            ,   
 

which is a portion of the annulus    in the w plane subtended by the 

rays  .   In Figure 3, we show the image of the rectangle   
 

            .   

 

        Figure 3  The image of   under the transformation  .   

  Trigonometric and Hyperbolic Functions 

    Based on the success we had in using power series to define the complex exponential , we 

have reason to believe this approach will be fruitful for other elementary functions as well. The 

power series expansions for the real-valued sine and cosine functions are 

 

            ,    and   

            

             

 

Thus, it is natural to make the following definitions. 

Definition.   The series for  Sine and Cosine are  

    ,    and   

            

             

 

http://mathworld.wolfram.com/Sine.html
http://mathworld.wolfram.com/Cosine.html
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    Clearly, these definitions agree with their real counterparts when z is real.  Additionally, it is 

easy to show that  are entire functions.   

    With these definitions in place, it is now easy to create the other complex trigonometric 

functions, provided the denominators in the following expressions do not equal zero. 

  

Definition .   ,  ,  ,  and  .   

  and  are entire functions, with  

  and  .   

    We now list several additional properties,   For all complex numbers z, 

 

                

    For all complex numbers z for which the expressions are defined,   

 

               

    To establish additional properties, it will be useful to express  in the Cartesian 

form .   

            , 

 

for all z, 
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 Whether z is real or complex.  Hence,      

            , 

           .   

 

                Figure   The mapping  . 

These equations in turn are used to obtain the following important identities 

 

          , 

 

         .  .  

    If    are any complex numbers, then 
 

                    

    A solution to the equation    is called a zero of the given function f.  As we now 

show, the zeros of the sine and cosine function are exactly where you might expect them to 

be.  We have    iff  ,  where n is any integer, and    iff  

,  where n is any integer. 

 

    We show the result for  and leave the result for  as an exercise.  When we use 

Identity     iff   

 

            .   
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Equating the real and imaginary parts of this equation gives 

      and   .   

 

The real-valued function cosh y is never zero, so the equation    implies 

that  ,  from which we obtain  for any integer n .   

Using the values    in the equation    yields   

       .   

 

which implies that  ,  so the only zeros for  are the values   for  n  an 

integer.  

    What does the mapping  look like?  We can get a graph of the 

mapping    by using parametric 

methods.  Let's consider the vertical line segments in the z plane obtained by successfully 

setting    for , and for each x value and letting y vary 

continuously, .  In the exercises we ask you to show that the images of these vertical 

segments are hyperbolas in the uv plane, we give a more detailed analysis of the 

mapping  . 

 

            Figure  Vertical segments mapped onto hyperbolas by  . 

 

            .   

 

If we multiply each term on the right by the conjugate of the denominator, the simplified result 

is   
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We leave it as an exercise to show that the identities  

  and    can be used in simplifying Equation  to get   

 

           

    As with , we obtain a graph of the mapping  parametrically.  Consider the 

vertical line segments in the z plane obtained by successively setting  

  for  ,  and for each z value letting y vary continuously, .  In the exercises 

we ask you to show that the images of these vertical segments are circular arcs in the uv plane, as 

Figure investigation of the mapping  . 

 

    Figure   Vertical segments mapped onto circular arcs by  . 

Definition  complexhyperbolicfunctions    

 

           

    With these definitions in place, we can now easily create the other complex hyperbolic 

trigonometric functions, provided the denominators in the following expressions are not zero. 
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Definition    Identities for the hyperbolic trigonometric functions are   

 

                 

    The derivatives of the hyperbolic functions follow the same rules as in calculus:   

     

 

 

 

 

 

 

 

 

 

   

    The hyperbolic cosine and hyperbolic sine can be expressed as   

 

             

    Some of the important identities involving the hyperbolic functions are   

  Complex Logarithm function 

    In Section 1, we showed that, if w is a nonzero complex number, then the equation    has 

infinitely many solutions.  Because the function    is a many-to-one function, its 

inverse (the logarithm) is multivalued.   

Definition .  (Multivalued Logarithm)  For , we define the function    as the 

inverse of the exponential function;  that is,   

    if and only if   .   

         ,   for   ,   
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where    and    denotes the natural logarithm of the positive 

number |z|.  Because    is the set  ,  we can 

express the set of values comprising  as 

  ,   

        or 

          for   ,    

    Recall that Arg is defined so that for  ,  we have  .  We call any one of 

the values given in Identities of a logarithm of z.  Notice that the different values of    all 

have the same real part and that their imaginary parts differ by the amount  ,  where n is an 

integer.  When  ,  we have a special situation. 

Definition .  (Principal Value of the Logarithm)  For  ,  we define the principal 

value of the logarithm as follows: 

   where   and .   

    The domain for the function    is the set of all nonzero complex numbers in 

the  z-plane, and its range is the horizontal strip    in the w-plane, and is 

shown in Figure 5.A.  We stress again that    is a single-valued function and corresponds 

to setting    in equation .  As we demonstrated in Section 2, the function    is 

discontinuous at each point along the negative x-axis, hence so is the function  .  In fact, 

because any branch of the multi-valued function    is discontinuous along some ray, a 

corresponding branch of the logarithm will have a discontinuity along that same ray.   

 

                Figure   The principal branch of the logarithm . 

Caution.  A phenomenon inherent in constructing an logarithm function:  It must have a 

discontinuity!  This is the case because as we saw in Section 2, any branch we choose 

for    is necessarily a discontinuous function.  The principal branch,  ,  is 

discontinuous at each point along the negative x-axis.  

Example.   Find the values of  

http://mathworld.wolfram.com/Logarithm.html
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 .   

 

Solution.  By standard computations, we have   

     

            and 

                 

The principal values are 

 

                

Extra Example 2.  The transformation  w = Log(z)  maps the z-plane punctured at the origin 

onto the horizontal strip in the w-plane.  

    We now investigate some of the properties of log(z) and Log(z).   

    for all z~=0       

and     ,   provided   ,     

 

and that the mapping  w = Log(z)  is one-to-one from domain    in the z plane 

onto the horizontal strip    in the w plane. 

     The following example illustrates that, even though Log(z) is not continuous along the 

negative real axis, it is still defined there. 

Example.  Identity  reveals that   

 

    (a)  ,   and   

 

    (b)  .    

    When  ,  where x is a positive real number, the principal value of the complex 

logarithm of z is   

 

            ,   

         

where .  Hence Log is an extension of the real function ln(x) to the complex case.  Are there 
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other similarities?  Let's use complex function theory to find the derivative of Log(z).    

When we use polar coordinates for  ,   

               

where  .  Because  is discontinuous only at points in its 

domain that lie on the negative real axis, U and V have continuous partials for any point 

 in their domain, provided  is not on the negative real axis, that is, provided  

  (Note the strict inequality for  here.).   In addition, the polar form of the Cauchy-Riemann 

equations holds in this region, since    it 

follows that   

 

             

        and 

             

               

 

provided   .  Thus the principal branch of the complex logarithm has the 

derivative we would expect.  Other properties of the logarithm carry over, but only in specified 

regions of the complex plane.   

 

Example .  Show that the identity    is not always valid.   

 

Solution.  Let  .  Then   
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        but 

                

 

Since  , 

  this is a counter example for which   

 .   

(i) The identity    holds true if and only 

if   

(ii)  Let  be nonzero complex numbers. The multivalued function  obeys the 

familiar properties of logarithms: 

          ,   

         , and

 

         .   

    We can construct many different branches of the multivalued logarithm function that are 

continuous and differentiable except at points along any preassigned ray  .  If we 

let  denote a real fixed number and choose the value of  ,  that lies in the 

range  ,  then the function    defined by   

 

          

 

where  ,  and  ,  is a single-valued branch of the logarithm function. The 

branch cut for    is the ray  ,  and each point along this ray is a point of 

discontinuity of .  Because  ,  we conclude that the 

mapping    is a one-to-one mapping of the domain  onto the horizontal 

strip  .  If  ,  then the function    maps the 

set    one-to-one and onto the 

rectangle  .  Figure 5.4 shows the mapping 

, its branch cut , the set D, and its image R. 
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                    Figure 5.4  The branch  of the logarithm. 

  

    We can easily compute the derivative of any branch of the multivalued logarithm. For a 

particular branch  for , and   (note the strict inequality for 

),  we start with  in Equations and differentiate both sides to get   

         

 

Solving for  gives   

     ,   for    for , and  .   

    The Riemann surface for the multivalued function    is similar to the one we 

presented for the square root function.  However, it requires infinitely many copies of the z plane 

cut along the negative x axis, which we label  for .  Now, we 

stack these cut planes directly on each other so that the corresponding points have the same 

position.  We join the sheet  as follows.  For each integer k, the edge of the sheet  in 

the upper half-plane is joined to the edge of the sheet  in the lower half-plane.  The Riemann 

surface for the domain of  looks like a spiral staircase that extends upward on the 

sheets   and downward on the sheets ,  as shown in Figure .  We use polar 

coordinates for z on each sheet.  For , we use 

 

              ,    where   

               

                and  .   

 

Again, for , the correct branch of  on each sheet is   
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            ,    where 

 

                and  .   

 

                Figure  The Riemann surface for the mapping  . 

12.7 Linear fractional transformation 

  Bilinear Transformations - Mobius Transformations 

    Another important class of elementary mappings was studied by August Ferdinand 

Möbius (1790-1868).  These mappings are conveniently expressed as the quotient of two linear 

expressions and are commonly known as linear fractional or bilinear transformations.  They arise 

naturally in mapping problems involving the function  arctan(z).  In this section, we show how 

they are used to map a disk one-to-one and onto a half-plane.  An important property is that these 

transformations are conformal in the entire complex plane except at one point.  

  Let    denote four complex constants with the restriction that .  Then the 

function 

 

             

 

is called  a bilinear transformation, a Möbius transformation, or a linear fractional 

transformation.    

If the expression for S(z)  is multiplied through by the quantity  ,  then the resulting 

expression has the bilinear form  

 .   

We collect terms involving z and write  .  Then, for values of   

  

 the inverse transformation is given by 

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Mobius.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Mobius.html
http://mathfaculty.fullerton.edu/mathews/c2003/ConformalMappingMod.html
http://mathworld.wolfram.com/MoebiusTransformation.html
http://mathworld.wolfram.com/LinearFractionalTransformation.html
http://mathworld.wolfram.com/LinearFractionalTransformation.html
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 . 

    We can extend    to mappings in the extended complex plane.  The 

value    should be chosen to equal the limit of   as  .  Therefore we define 

 

                ,   

 

and the inverse is  .  Similarly, the value    is obtained by 

 

                , 

 

and the inverse is  .  With these extensions we conclude that the 

transformation    is a one-to-one mapping of the extended complex z-plane onto the 

extended complex w-plane.   

    We now show that a bilinear transformation carries the class of circles and lines onto itself.  

 If S(z) is an arbitrary bilinear transformation . ,  thenS(z)  reduces to a linear 

transformation, which carries lines onto lines and circles onto circles.  If  ,  then we can 

write S(z) in the form   

               

    The condition    precludes the possibility that S(z) reduces to a constant.  Now 

S(z) can be considered as a composition of functions.   

It is a linear mapping  ,  followed by the reciprocal transformation  ,  followed 
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by  .  In above we showed that each function in this composition maps the 

class of circles and lines onto itself; it follows that the bilinear transformation S(z) has this 

property.  A half-plane can be considered to be a family of parallel lines and a disk as a family of 

circles.  Therefore we conclude that a bilinear transformation maps the class of half-planes and 

disks onto itself.  Example 10.3 illustrates this idea. 

Example   Show that    maps the unit disk    one-to-one and onto 

the upper half-plane  .   

      

  

Solution.  We first consider the unit circle  ,  which forms the boundary of the disk 

and find its image in the w plane.   

If we write  ,  then we see that  ,  ,  , and .   

 we find that the inverse is given by 

      .   

If  ,  then the above Equation  satisfy  which yields the equation  

 .   

Squaring both sides of above Equation , we obtain 
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which is the equation of the u axis in the w plane.   

    The circle C divides the z plane into two portions, and its image is the u axis, which divides 

the w plane into two portions.  The image of the point    is  ,  so we expect that 

the interior of the circle C is mapped onto the portion of the w plane that lies above 

the u axis.  To show that this outcome is true, we let  .  Hence  the image values must 

satisfy the inequality  ,  which we write as   

         .   

    If we interpret  as the distance from    and  as the distance from  ,  then a 

geometric argument shows that the image point w must lie in the upper half-plane  ,  as 

shown in Figure 10.5.  As S(z) is one-to-one and onto in the extended complex plane, it follows 

that S(z) maps the disk onto the half-plane. 

 

           image    under  ,  the points      are mapped 

onto the points  ,  respectively. 

    The general formula for a bilinear transformation (Equation appears to involve four 

independent coefficients:  .  But as S(z) is not identically constant, either  

  or  ,  we can express the transformation with three unknown coefficients and write either 

 

                 or     ,   
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respectively.  Doing so permits us to determine a unique a bilinear transformation if three distinct 

image values  ,   , and    are specified.  To determine such a 

mapping, we can conveniently use an implicit formula involving z and w. 

  

Theorem (The Implicit Formula). There exists a unique bilinear transformation that maps three 

distinct points   onto three distinct points , respectively.  An implicit 

formula for the mapping is given by the equation     

 

           .  

Example   Construct the bilinear transformation  w = S(z)  that maps the 

points    onto the points  ,  respectively. 

                     

   

Solution.  We use the implicit formula  

     

 

             

 

            .    

Expanding this equation, collecting terms involving w and zw on the left and then simplify. 
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Therefore the desired bilinear transformation is       .    

Example   Find the bilinear transformation  w = S(z)  that maps the 

points    onto the points  ,  respectively. 

                               

  

Solution.  Again, we use the implicit formula, Equation , and write 

     

 

        

 

                 

Using the fact that  

 , 

  we rewrite this equation as     .     
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We now expand the equation and obtain   

               

 

which can be solved for w in terms of z, giving the desired solution   

            .  

    We let D be a region in the z plane that is bounded by either a circle or a straight line C.  We 

further let  be three distinct points that lie on C and have the property that an 

observer moving along C from  through  finds the region D to be on the left.  If C is a 

circle and D is the interior of C, then we say that C is positively oriented.  Conversely, the 

ordered triple  uniquely determines a region that lies to the left of C. 

    We let G be a region in the w plane that is bounded by either a circle of a straight line K.  We 

further let  be three distinct points that lie on K such that an observer moving 

along K from  through  finds the region G to be on the left.  Because a bilinear 

transformation is a conformal mapping that maps the class of circles and straight lines onto itself, 

we can use the implicit formula to construct a bilinear transformation  that is a one-to-

one mapping of D onto G. 

Example .  Show that  the mapping    maps the disk  

  one-to-one and onto the upper half plane  .   

       

Solution.  For convenience, we choose the ordered triple  , which 

gives the circle    a positive orientation and the disk D a left orientation.  From 

Example 10.5, the corresponding image points are    
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Because the ordered triple of points  ,  lie on the u axis, it follows that the 

image of circle C is the u axis.  The points   give the upper half-

plane    a left orientation.  Therefore  maps the 

disk D onto the upper half-plane G.  To check our work, we choose a point  that lies in D and 

find the half-plane in which its image,  lies.  The choice    yields  

.  Hence the upper half-plane is the correct image.  This situation is illustrated in Figure 10.6. 

 

           Figure   The bilinear mapping   

Corollary  (The Implicit Formula with a point at Infinity).  In equation the point at infinity 

can be introduced as one of the prescribed points in either the z plane or the  w plane. 

Proof. Case 1.  If  ,  then we can write    and substitute this 

expression to obtain    which can be rewritten 

as   and simplifies to obtain 

  .   

 

Case 2.  If  ,  then we can write   and substitute this expression 

to obtain 

   

 which can be rewritten as 

http://mathfaculty.fullerton.edu/mathews/c2003/mobiustranformation/MobiusTranformationMod/Links/MobiusTranformationMod_lnk_6.html
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 and simplifies to obtain 

 .   

   Above equation  is sometimes used to map the crescent-shaped region that lies between the 

tangent circles onto an infinite strip. 

Example   Find the bilinear transformation  that maps the crescent-shaped region that 

lies inside the disk   and outside the circle   onto a horizontal strip. 

     

 

  

Solution.  For convenience we choose    and the image 

values  ,  respectively.  The ordered triple    gives 

the circle    a positive orientation and the disk    has a left 

orientation.  The image points    all lie on the extended u axis, and they 

determine a left orientation for the upper half-plane  .  Therefore we can use the 

second implicit formula  to write   

 

            ,   

 

which determines a mapping of the disk    onto the upper half-plane  

.  Use the fact that 
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to simplify the preceding equation and get 

    

 

which can be written in the form   . 

A straightforward calculation shows that the points    are mapped onto 

the points   

 

               

 

respectively.  The points    lie on the horizontal line    in 

the upper half-plane.  Therefore the crescent-shaped region is mapped onto the horizontal 

strip  ,  as shown in Figure 10.7. 

 

          Figure   The mapping  .   

  

  

 

 

COMPLEX INTEGRATION 

Line integral in the complex plane 
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Def. Complex line integral. Let C be a rectifiable curve (i.e. a curve of finite length) joining 

points a and b in the complex plane and let f(z) be a complex-valued function of a complex 

variable z, continuous at all points on C. Subdivide C into n segments by means of points a = z0, 

z1, ... , zn = b selected arbitrarily along the curve. On each segment joining zk-1 to zk choose a 

point ξ k . Form the sum 

 

              

 

Let Δ be the length of the longest chord Δzk. Let the number of subdivisions n approach infinity 

in such a way that the length of the longest chord approaches zero. The sum Sn will then 

approach a limit which does not depend on the mode of subdivision and is called the line integral 

of f(z) from a to b along the curve: 

∫  ( )  
 

 
       ∑  (  )   

 
     

Let f be a continuous complex-valued function of a complex variable, and let C be a smooth 

curve in the complex plane parametrized by 

Z(t) = x(t) + i y(t) for t varying between a and b. 

 

Then the complex line integral of f over C is given by 

 
 

Note that the "smooth" condition guarantees that Z
'
 is continuous and, hence, that the integral 

exists. 

Properties of line integrals 

If f(z) and g(z) are integrable along curve C, then 

 

 
 

 
 

 
 

 
 

 
where |f(z)|  M ( i.e. M is an upper bound of |f(z)| on C) and L is the length of C.(ML 

INEQUALITY) 
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Connection between real and complex line integrals. Real and complex line integrals are 

connected by the following theorem. 

Theorem . If f(z) = u(x, y) + i v(x, y) = u + iv, the complex integral 1) can be expressed in terms 

of real line integrals as 

∫  ( )  
 

 
 ∫ (    )(      )

 

 
 ∫        

 

 
  ∫        

 

 
  

Theorem . Let f(z) be analytic in a simply-connected region R. If a and b are any two points in R 

and F'(z) = f(z), then 

 

              

Example.                                           

 

              

Example :            ∫
(   )  

  
                                         

Soln:                                     

∫
(   )  

 
 

 ∫
(      )

    
          ∫(      )

 

 

   

 

 

     ∫(     )

 

 

  

   (
   

 
 

 

 
  ) 

                                             

13.2 Cauchy’s integral theorem 

Def. Simply-connected region. A region R is said to be simply-connected if any simple closed 

curve which lies in R can be shrunk to a point without leaving R. A region R which is not 

simply-connected is said to be multiply-connected. The region shown in Fig. 1-1 is simply-
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connected. The regions shown in Figures 1-2 and 1-3 are multiply-connected. 

 

Cauchy’s integral theorem. Let a function f(z) be analytic within and on the boundary 

of a region R, either simply or multiply-connected, and let C be the entire boundary of R. Then 

 

             OR 

Let a function f(z) be analytic in a simply-connected region R and let C be a closed (not 

necessarily simple) curve in R. Then 

 

                                                                 

 

See figure-2   

Proof :                  

Let  denote the real numbers such that . Let Let  and  be the functions 

mapping into  such that . Then
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Now, since  is complex-

differentiable, Let  be the region bounded by . Then by Green's theorem,

and similarly,

Thus Cauchy's theorem 

holds. Proved 

Meaning 

The Cauchy Integral Theorem guarantees that the integral of a function over a path depends only on the 

endpoints of a path, provided the function in question is complex-differentiable in all the areas bounded 

by the paths. Indeed, if  and  are two paths from  to , then

 

Example :  ∫
(    )                                                     ( )      

                                                          
 

 

13.3 Cauchy’s integral formula 

Suppose U is an open subset of the complex plane C, f : U → C is a holomorphic function and 

the closed disk D = { z : | z − z0| ≤ r} is completely contained inU. Let  be the circle forming 

the boundary of D. Then for every a in the interior of D: 

 
where the contour integral is taken counter-clockwise. 

Proof:  

By using the Cauchy integral theorem, one can show that the integral over C (or the closed 

rectifiable curve) is equal to the same integral taken over an arbitrarily small circle around a. 

Since f(z) is continuous, we can choose a circle small enough on which f(z) is arbitrarily close 

to f(a). On the other hand, the integral 

http://en.wikipedia.org/wiki/Open_subset
http://en.wikipedia.org/wiki/Complex_plane
http://en.wikipedia.org/wiki/Boundary_(topology)
http://en.wikipedia.org/wiki/Interior_(topology)
http://en.wikipedia.org/wiki/Contour_integral
http://en.wikipedia.org/wiki/Curve_orientation
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ver any circle C centered at a. This can be calculated directly via a parametrization (integration 

by substitution)  where 0 ≤ t ≤ 2π and ε is the radius of the circle. 

Letting ε → 0 gives the desired estimate 

 
 

Ex 1 : Let 

, 

and let C be the contour described by |z| = 2 (i.e. the circle of radius 2). 

To find the integral of g(z) around the contour C, we need to know the singularities of g(z). 

Observe that we can rewrite g as follows: 

 

where   

Thus, g has poles at  and . The moduli of these points are less than 2 and thus lie inside the 

contour. This integral can be split into two smaller integrals by Cauchy-Goursat theorem; that is, 

we can express the integral around the contour as the sum of the integral around 

           where the contour is a small circle around each pole. Call these contours    around    

and C2 around z2. 

Now, each of these smaller integrals can be solved by the Cauchy integral formula, but they first 

must be rewritten to apply the theorem.  

 
and now 

. 

http://en.wikipedia.org/wiki/Integration_by_substitution
http://en.wikipedia.org/wiki/Integration_by_substitution
http://en.wikipedia.org/wiki/Absolute_value
http://en.wikipedia.org/wiki/Cauchy-Goursat_theorem
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    Since the Cauchy integral theorem says that: 

, 

 

we can evaluate the integral as follows: 

 

Doing likewise for the other contour: 

 

 

 

The integral around the original contour C then is the sum of 

these two integrals: 

 
 

An elementary trick using partial fraction decomposition: 

 

13.4 Derivatives of analytic functions 

Suppose U is an open subset of the complex plane C, f : U → C is an analytic function which is 

also differentiable and the closed disk D = { z : | z − z0| ≤ r} is completely contained inU. Let  be 

the circle forming the boundary of D. Then for every a in the interior of D:  

 
( For proof refer your text book Advanced engineering mathematics by Erwin Kreyzig ) 

Example:          ∫
        

(   ) 
  

 
                       |   |    

http://en.wikipedia.org/wiki/Partial_fraction_decomposition
http://en.wikipedia.org/wiki/Open_subset
http://en.wikipedia.org/wiki/Complex_plane
http://en.wikipedia.org/wiki/Boundary_(topology)
http://en.wikipedia.org/wiki/Interior_(topology)
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         ∫
        

(   ) 
  

 

   (        )  {        }  

          ] {        }                

Liouville’s theorem :  

The  theorem follows from the fact that holomorphic functions are analytic. If f is an entire function, 

it can be represented by its Taylor series about 0: 

 
where (by Cauchy's integral formula) 

 

and Cr is the circle about 0 of radius r > 0. Suppose f is bounded: i.e. there exists a constant M such 

that |f(z)| ≤ M for all z. We can estimate direct

 

where in the second inequality we have used the fact that |z|=r on the circle Cr. But the choice of r in 

the above is an arbitrary positive number. Therefore, letting r tend to infinity (we let r tend to infinity 

since f is analytic on the entire plane) gives ak = 0 for all k ≥ 1. Thus f(z) = a0 and this proves the 

theorem. 

Morera's theorem states that a continuous, complex-valued function ƒ defined on 

a connected open set D in thecomplex plane that satisfies 

 

for every closed piecewise C1 curve  in D must be holomorphic on D. 

The assumption of Morera's theorem is equivalent to that ƒ has an antiderivative on D. 

The converse of the theorem is not true in general.  

Example:       

          ∫
  

   
                       | |        

                                 

    ∫
 

  
   ∫

     

      
   

 

 
∫       

  

 

  

  

 

 
  

 
[       ]   

 

 
(   )    

                      
 

  
                                

 

  
                         

http://en.wikipedia.org/wiki/Proof_that_holomorphic_functions_are_analytic
http://en.wikipedia.org/wiki/Taylor_series
http://en.wikipedia.org/wiki/Cauchy%27s_integral_formula
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Connected_space
http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Complex_plane
http://en.wikipedia.org/wiki/Antiderivative_(complex_analysis)
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                         ( )                                                                           

  
 

∫  ( )                    ( )                              
 

  

 

 

 

 

 

  

                           

 

5. Infinite Series, Convergence tests,  

 

5.1 Series : Let (  ) be a sequence of real numbers. Then an expression of the form       
      denoted by ∑   

 
    , is called a series. 

 

Examples : 1. ∑
 

 
 
    1 + 

 

 
 

 

 
   

 

Examples : 2∑
 

    
       

 

 
 

 

 
   

 

Partial sums :    =          +   is called the nth partial sum of the series ∑   
 
   , 

 

5.2 Convergence or Divergence of ∑   
 
    

 

If     S for some S then we say that the series ∑   
 
    converges to S. If (  ) does not 

converge then we say that the series  ∑   
 
    diverges. 

Examples : 

 

1.∑     (
   

 
) 

    diverges because    = log(n + 1). 
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2. ∑  (
 

   
) 

    converges because      
 

   
    

 

3. If 0 < x < 1; then the geometric series∑    
    converges to 

 

   
 because    

    

   
  

 

Necessary condition for convergence 

 

Theorem 1 : If  ∑   
 
   converges then     . 

 

Proof :         =          S = 0.    

The condition given in the above result is necessary but not sufficient i.e., it is possible that 

     and ∑   
 
    diverges. 

 

Examples : 

 

1. If | |    , then ∑    
   diverges because       

2. .  ∑      
    diverges because       

3. ∑    (
   

 
) 

   diverges, however,    (
   

 
)   . 

 

Necessary and sufficient condition for convergence 

 

Theorem 2: Suppose           Then ∑   
 
    converges if and only if (  ) is bounded above. 

 

Proof :  Note that under the hypothesis, (  ) is an increasing sequence.   

Example : The Harmonic series ∑
 

 
 
    diverges because 

             
 

 
   

 

 
   

 

 
        

 

     
 

 
  

    for all k. 

Theorem 3: If   ∑ |  | 
    converges then ∑   

 
    converges. 

 

Proof : Since  ∑ |  | 
   converges the sequence of partial sums of  ∑ |  | 

    satisfies the Cauchy 

criterion. Therefore, the sequence of partial sums of   ∑   
 
     satisfies the Cauchy criterion.   

 

Remark : Note that  ∑   
 
     converges if and only if  ∑   

 
    converges for any p   1. 

 

5.3 Tests for Convergence 
 
Let us determine the convergence or the divergence of a series by comparing it to one 
whose 
behavior is already known. 
 
Theorem 4 :  (Comparison test ) Suppose          for n  k for some k:  
 

1. Then the convergence of ∑   
 
   implies the convergence of ∑   

 
   . 

2. The divergence of ∑   
 
    implies the divergence of ∑   

 
   . 

Proof : 1.  Note that the sequence of partial sums of ∑   
 
    is bounded. Apply 

Theorem 2. 
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              2.This statement is the contrapositive of (1).   
Examples: 

1. ∑  (
 

(   ) )
 
    converges because 

 

(   )(   )
 

 

 (   )
 .This implies that ∑

 

  
 
    

converges. 

2. ∑
  

√  
 
   diverges because 

 

 
 

 

√ 
.. 

        3.  ∑
 

  
 
    converges because   

 < n! for n > 4: 

Problem 1 : Let      : Then show that both the series ∑       and ∑
  

    
     converge 

or diverge together. 

Solution : Suppose ∑        converges. Since   
  

    
   by comparison test ∑

  

        

converges. 

Suppose ∑
  

    
    converges. By the Theorem 1, 

  

    
    Hence      0 and 

therefore 

         eventually. Hence   
  

 
 

  

    
. Apply the comparison test. 

 

Theorem 5 : (Limit Comparison Test) Suppose        ¸ 0 eventually. Suppose  

1. If L  R;L > 0, then both ∑   
 
    and ∑   

 
    converge or diverge together. 

2. If L  R;L = 0, and ∑   
 
    converges then ∑   

 
   converges. 

3. If L = 1 and ∑   
 
   diverges then ∑   

 
   diverges. 

Proof:  
1.  Since L > 0, choose  > 0, such that L   > 0. There exists    such that 0   

  
  

  
    <. Use the comparison test. 

2.  For each    , there exists    such that 0 <
  

  
            Use the comparison test. 

3. Given   > 0, there exists    such that 
  

  
         . Use the comparison test.   

Examples : 1. ∑ (      
 

 
) 

    converges. Take bn = 
 

   in the previous result. 

2. ∑
 

 
   (  

 

 
) 

     converges. Take bn = 
 

   in the previous result. 

Theorem 6 (Cauchy Test or Cauchy condensation test) If     and             , 

then  ∑   
 
   converges if and only if ∑      

 
     converges. 

 

Proof : Let    =          +  and    =        +   
  : 

Suppose (Tk) converges. For a fixed n; choose k such that      . Then 
             =          +   

                   (     ) +( 
      

      
) 

                        +   
   

                     
· 

This shows that (Sn) is bounded above; hence (Sn) converges. 

Suppose (Sn) converges. For a fixed k; choose n such that     
 Then 

        =          +   
                   ( 

 
   )   +(             ) 

            
 

 
 

 
        +     
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This shows that (Tk) is bounded above; hence (Tk) converges.   
 
Examples: 

1. ∑
 

  
 
    converges if p > 1 and diverges if p  1: 

2. ∑
 

 (    ) 
 
    converges if p > 1 and diverges if p  1: 

Problem 2 : Let     and              and suppose ∑   converges. Show 

that       as      

Solution : By Cauchy condensation test ∑      
 
    converges. Therefore        0 

and hence       
     as    . Let          

. Then                   . 

This implies that       as    . 
 

Theorem 7 (Ratio test) :Consider the series  ∑   
 
   ,         : 

1. If |
    

  
|   eventually for some 0 < q < 1; then  ∑ |  | 

   converges. 

2. If  |
    

  
|   eventually then  ∑   

 
   diverges. 

 

Proof:  
1.  Note that for some N; |    |   |  |        Therefore, |    |    |  |         

Apply the comparison test. 
2.  In this case |  |   . 

Corollary 1: Suppose         ; and |
    

  
|    for some L. 

 for some L: 

1. If L < 1 then  ∑ |  | 
   converges. 

2. If L > 1 then  ∑   
 
    diverges. 

3. If L = 1 we cannot make any conclusion. 
 
Proof : 

1. Note that |
    

  
|     

   

 
   eventually. Apply the previous theorem. 

2. Note that |
    

  
|     

   

 
 eventually. Apply the previous theorem. 

Examples :  

1.  ∑
 

  
 
    converges because 

    

  
   

2. ∑
  

  
 
    diverges because 

    

  
 (  

 

 
)
 

     

3. ∑
 

  
 
   diverges and ∑

 

   
 
    converges, however, in both these cases 

    

  
  : 

 

Theorem 8 : (Root Test ) If        
 or      

 
 ⁄     eventually for some 0 < x < 1 

then ∑ |  | 
    converges. 

Proof : Immediate from the comparison test.   
 

Corollary 2: Suppose |  |
 

 ⁄    for some L: Then 

1.  If L < 1 then  ∑ |  | 
    converges. 

2.  If L > 1 then ∑   
 
    diverges. 
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3.  If L = 1 we cannot make any conclusion. 
Examples : 

1. ∑
 

(    ) 
 
    converges because   

 
 ⁄  

 

    
   

2. ∑ (
 

   
)
  

 
      converges because   

 
 ⁄  

 

(  
 

 
)
  

 

 
    

3. ∑
 

 
 
    diverges and  ∑

 

  
 
    converges, however, in both these cases   

 
 ⁄     

5.4 Taylor Series and Maclaurin Series 

The Taylor series of a real or complex-valued function ƒ(x) that is infinitely differentiable at 

a real or complex number a is the power series 

 ( )  
  ( )

  
(   )  

   ( )

  
(   )  

    ( )

  
(   )     

which can be written in the more compact sigma notation as 

∑
 ( )

  
 
    (   )  

where n! denotes the factorial of n and ƒ
 (n)

(a) denotes the nth derivative of ƒ evaluated at the 

point a. The derivative of order zero ofƒ is defined to be ƒ itself and (x − a)
0
 and 0! are both 

defined to be 1. When a = 0, the series is also called a Maclaurin series. 

Example: 

The Maclaurin series for any polynomial is the polynomial itself. 

The Maclaurin series for (1 − x)
−1

 is the geometric series 

            

so the Taylor series for x
−1

 at a = 1 is 

  (   )  (   )  (   )    

By integrating the above Maclaurin series, we find the Maclaurin series for log(1 − x), where 

log denotes the natural logarithm: 

   
 

 
   

 

 
   

 

 
     

and the corresponding Taylor series for log(x) at a = 1 is 

            
 

 
(   )  

 

 
(   )  

 

 
(   )    

and more generally, the corresponding Taylor series for log(x) at some a = x0 is: 

   (  )  
 

  
(    )  

 

  
 
(    )

     

 

The Taylor series for the exponential function e
x
 at a = 0 is 

    
 

  
   

 

  
   

 

  
     ∑

  

  
 
     

http://en.wikipedia.org/wiki/Real-valued_function
http://en.wikipedia.org/wiki/Complex-valued_function
http://en.wikipedia.org/wiki/Infinitely_differentiable_function
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Power_series
http://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
http://en.wikipedia.org/wiki/Factorial
http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Geometric_series
http://en.wikipedia.org/wiki/Natural_logarithm
http://en.wikipedia.org/wiki/Exponential_function
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The above expansion holds because the derivative of e
x
 with respect to x is also e

x
 and 

e
0
 equals 1. This leaves the terms (x − 0)

n
 in the numerator and n! in the denominator for each 

term in the infinite sum. 

 

Laurent series and Residues 
6.1 What is a Laurent series? 

The Laurent series is a representation of a complex function f(z) as a series. Unlike the Taylor 

series which expresses f(z) as a series of terms with non-negative powers of z, a Laurent series 

includes terms with negative powers. A consequence of this is that a Laurent series may be used 

in cases where a Taylor expansion is not possible. 

6.2 Calculating the Laurent series expansion 

To calculate the Laurent series we use the standard and modified geometric series which are 

                                                  
 

   
 {

∑          | |     
   

∑
 

  
 
         | |    

                                                      (1) 

Here f(z) = 
 

   
 is analytic everywhere apart from the singularity at z = 1. Above are the 

expansions for f in the regions inside and outside the circle of radius 1, centered on z = 0, where 

|z| < 1 is the region inside the circle and |z| > 1 is the region outside the circle. 

 Example-1: 

Determine the Laurent series for 

                                                  ( )  
 

   
 

that are valid in the regions 

                                       (i) {z : |z| < 5},  and   (ii) {z : |z| > 5}. 

Solution 

The region (i) is an open disk inside a circle of radius 5, centered on z = 0, and the region (ii) is 

an open annulus outside a circle of radius 5, centered on z = 0. To make the series expansion 

easier to calculate we can manipulate our f(z) into a form similar to the series expansion shown 

in equation (1). 

 So,                         ( )  
 

 (  
 

 
)
 

 

 (  ( 
 

 
))
  

Now using the standard and modified geometric series, equation (1), we can calculate that 

                             ( )  
 

 (  ( 
 

 
))

 {

 

 
∑ (

  

 
)
 

       | |     
   

 
 

 
∑

 

(
  

 
)
 

 
         | |    

 

 

Hence, for part (i) the series expansion is 

 ( )  
 

 
∑ (

  

 
)
 

 
 

 
∑

(  )   

  

 

   

 

   

 ∑
(  )   

    

 

   

        | |         

which is a Taylor series. And for part (ii) the series expansion is 

                              ( )   
 

 
∑

 

(
  

 
)
 

 
     

 

 
∑

(  )   

  
 
     ∑

(  )     

          | |     
    

 Example 2.  

For the following function   determine the Laurent series that is valid within the stated region R. 

                                   ( )  
 

 (   )
,       {    |   |   }  

Solution 
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The region R is an open annulus between circles of radius 1 and 3, centered on z=1.We 

want a series expansion about z=1;to do this we make a substitution       and look 
for the expansion in w where   | |     In terms of w 

 ( )  
 

(   )(   )
  

To make the series expansion easier to calculate we can manipulate our f(z) into a form 
similar to the series expansion shown in equation (1). To do this we will split the function 
using partial fractions, and then manipulate each of the fractions into a form based on 
equation (1), so we get 

 ( )  
 

 
(

 

(   )
 

 

(   )
)  

 

 
(

 

(  (  )
 

 

 (  (
  
 ))

)  

Using the the standard and modified geometric series, equation (1), we can calculate 
that 
 

                                    
 

(  (  ))
 {

∑ (  )  
    ∑ (  ) ( )        | |     

   

 ∑
 

(  ) 
 
     ∑

(  ) 

( ) 
 
               | |    

 

and 

                                       
 

 (  (
  

 
))

 {
 

 
∑ (

  

 
)
 

 
 

 
 
   ∑

(  )   

    
   ∑

(  )   

    
 
    

 

 (  (
  
 ))

 

{
 
 

 
  

 
∑ (

  

 
)
 

 
 

 
∑

(  )   

  
 ∑

(  )   

    

 

   

 

   

 

   

              | |   

 
 

 
∑

 

(
  
 )

   
 

 

 

   

∑
(  ) 

  

 

   

 ∑
(  )     

  

 

   

       | |    

 

 
 

We require the expansion in w where    | |     so we use the expansions for | | > 1 
and  | | < 3, which we can substitute back into our f(z) in partial fraction form to get 
 

 ( )  
 

 
[ ∑

(  ) 

( ) 
 ∑

(  )   

    

 

   

 

   

]   
 

 
[∑

(  ) 

( ) 
 ∑

(  )   

    

 

   

 

   

]  

Substituting back in        we get the Laurent series, valid within the region 
  |   |   , 
 
 

 ( )   
 

 
[∑

(  ) 

(   ) 
 ∑

(  ) (   ) 

    
 
   

 
   ]. 

6.2 Singularities 
Def. A point z = a is called a singularity of a function f (z) if f is not differentiable at z = a.  

Examples 1 

(a) f (z) = e
3/z

 ;  a = 0 

(b) f (z) = (z – 1)
 – 2 

 ;  a = 1 
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(c) f (z) = tan z;  a = (2 1)
2

n   

  Classification of the Singularity a of f 

depends on the Laurent Series of f about a, i.e., 

                   ( ) ( )n

n

n

f z c z a




  . 

 

i) a is called a Removable singularity if 

         0nc    for all n < 0 

 

Example 2:    f (z) = (sin z) /z;  a = 0. 

 
ii) a is called a Essential singularity if 

        0nc    for infinitely many n < 0 

  

Example 3 :    f (z) = e
3/z

;  a = 0. 
 

iii) a is called a Simple Pole if 

1 0c   and 0nc    for all n < – 1   
  

Example 4:    f (z) = (z – 1)
 – 1 

 ;    a =1. 
 

iv) a is called a Pole of Order m if 

0mc   and 0nc    for all n < – m .  
  

Example 5:    f (z) = (z – 1)
 – 5 

 ;    a =1 is a pole of order 5 for the function f. 

6.3 Zero of Order m 

A point z = a is called a zero of order m of a function f (z) if  
( ) ( )( ) 0, 0,1, , 1 but ( ) 0.j mf a j m f a     

 

Example 6:    f (z) = (z – 1)
 5 

;    a =1 is a Zero of order 5 for the function f. 
 

Note: If z = a is a zero of order m of a function   f (z), then z = a is a pole of order m for 1/ f 

(z). 
 

Test for the Order of a Pole of Rational Functions F(z) = f (z) / g (z) 

z = a is a pole of order m for F if  

i. ( ) 0f a  . 

ii. z = a is a zero of order m of f (z). 
 

Exercise: Apply this test to the above examples. 

6.4 Residue of  f (z)   at a Singularity z = a 

is defined with the help of the Laurent Series of f about a, i.e.,  

if we have 

( ) ( )n

n

n

f z c z a




  , 

then the number 
1c  is called the Residue of  f (z)   at z = a . 

Notation: “Residue of f (z)   at z = a” = Res(f , a). 
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Examples 
In Examples 1 

(a) Res(e
3/z

  , 0) = 3 

(b) Res((z – 1)
 – 2

  ,1) = 0 

Note: Res((z – 1)
 – 1

  ,1) = 1 

6.5 Method for Finding Res(f , a)  
[without Laurent Series] 

Case 1: If a is a Simple Pole of f , then 

Res(f , a) = lim( ) ( )
z a

z a f z


 . 

Example: Res((z –3)
 
(z – 1)

 – 1
  ,1) = – 2 

 

Case 2: If a is a Pole of order m of f , then 

Res(f , a) = 
1

1

1
lim ( ) ( )

( 1)!

m
m

mz a

d
z a f z

m dz





 
 

  
. 

Examples: 
 i. Res(

 
(z – 1)

 – 2
  ,1) = 0  (Check) 

ii. Res(((z –3)
 – 1  

(z – 1)
 – 2

  ,1) = – ¼  (Check) 

iii. Res(((z –3)
 – 1  

(z – 1)
 – 2

  ,3) =  ¼  (Check) 
 

Note: We can not use this method if a is not a Pole: For example check for Res(e
3/z

  , 0). 

6.6  Residue Theorem  

(To Evaluate ( )
C

f z dz where C is a closed path) 

Conditions: 

i. C is a simple path in a simply connected domain D. 

ii. f (z) is differentiable on and within C except at a finite number of singularities, say a1, a2, ….., 

an within C.  
Conclusion: 

1

( ) 2 Re ( , )
n

i

iC

f z dz i s f a


   

Examples 

1.
2

1

2

0
( 1)( 2)

z

dz

z z



   (No singularities within |z|=1/2) 

2.
2

3

2

2
2 (Res( ,1)

( 1)( 2) 9
z

dz i
i f

z z






 
   

6.7 Evaluation of Real Integrals 

A. Type 1: Real Trigonometric Integral I=
2

0

(cos ,sin )F d



    

Method (Change of variable): C: ,0 2 .iz e      

Then:  
1 1

, cos ,sin
2 2

dz z z z z
d

iz i
  

  
    

(Note: cos sinie i    ) 
 

Now use Residue Theorem to solve 
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1 11 1
( ), ( )

2 2
C

dz
I F z z z z

z

  
   

 
 . 

Example 1: Evaluate 
2

0
2 sin

d




  

Solution: i. Use: (a) ,0 2 .iz e      

(b) 
1

,sin
2

dz z z
d

iz i
 


   

ii. I = 
2

1 1

2 2
( )

4 1 ( )( )
C C C

dz dz
f z dz

z iz z a z a

 
 

       

Here: 1 2(2 3) ; (2 3)a i a i     (Only a1 is inside C) 

iii.  1

2
( ) 2 Res( , )

3C

f z dz i f a


   (Answer) 

(
1

1 1

1 2

2 1
Res( , ) lim ( )

( )( ) 3z a
f a z a

z a z a i

 
   

  
) 

 

B. Important Concepts 

a. Cauchy Principal Value of ( )f x dx





 : 

P. V. ( ) lim ( )

R

R
R

f x dx f x dx






   

Note 1: If the integral ( )f x dx





 converges and its value is A then 

A = P.V. ( ) lim ( )

R

R
R

f x dx f x dx






  . 

Note 2: It may happen that  

i. The integral ( )f x dx





  may diverge  

ii. lim ( )

R

R
R

f x dx
  exits. 

Example: 
dx

x





  diverges but lim 0

R

R
R

dx

x
 . 

b. Two Important Results: 

Suppose that  

i. CR: ,0iz Re     , a semicircular path 

ii. f (z) = P(z)/Q(z), P & Q are Polynomials. 

 

Result I : If degree Q   degree P + 2, then 

( ) 0as

RC

f z dz R  . 

 



133 

 

Result II :If degree Q   degree P + 1, then 

( ) 0as

R

i z

C

f z e dz R   , where 0  . 

(a useful result related to Fourier Transform) 
 

c. Third Important Result: 

Result III :Suppose that 

i. f has a simple real pole at z = c . 

ii. Cr: ,0iz c Re      . 

Then ( ) Res( , )as 0

rC

f z dz i f c r   

d. 

( )cos Re ( )

( )sin Im ( )

iax

iax

f x x dx f x e dx

f x x dx f x e dx

 

 

 

 






 



 

 

 

e. 
0

1
( ) ( ) ,  if ( ) is even.

2
f x dx f x dx f x

 



   

 

B. Type 2: I= ( )f x dx





   

where f =P/Q with degree Q   degree P + 2 has  

finite number of poles in the complex plane: 

 

Method: Draw a closed path  

C = CR+[–R,R] 

where CR: ,0iz Re     , with large R to enclose the poles ak ‘s of  f  within C, 

which are in the upper half of the plane.  

 

                                   x  a3       CR 

                         x  a2    x       x                                         

                                      x  a1     x           x  an 

 

Then            – R  0     R                                   

1

0 as 
2 Res( , ) ( )  as 

( ) ( ) ( )

R

n

k

k

R

C C R

R
i f a f x dx R

f z dz f z dz f x dx




 



 
 

 

 

    

 Example 2: Evaluate 
2 2 2( 1) ( 9)

dx

x x




   

 Solution: i. Here 
2 2 2

1
( )

( 1) ( 9)
f z

z z


 
 

ii. Poles of f in the upper half plane: 



134 

 

  (a) z = i (Double Pole) 

(b) z = 3 i (Simple Pole) 

iii. Calculate the Residues: 

2

2 2 2 2

2 2 2 2

1 3
Res( , ) lim ( )

( 1) ( 9) 8 .4

1 1
Res( ,3 ) lim( 3 )

( 1) ( 9) 8 .6

z i

z i

d
f i z i

dz z z i

f i z i
z z i





  
 

  
 

 

iv. Note that:  

1) ( ) ( ) ( )

R

R

C C R

f z dz f z dz f x dx


     …… (*) 

2)   2

7
( ) 2 Res( , ) Res( ,3 )

8 .6
C

f z dz i f i f i


    

3) (Ans.) Apply Cauchy Residue Theorem to the Left side of (*). Take the limit as R  in 

(*).  Then apply Result I to 2
nd

 integral in (*), we get: 

2 2 2 2

7

8 .6 ( 1) ( 9)

dx

x x







  . 

 

C. Type 3: I= ( )[cos or sin ]f x ax ax dx





   

where f =P/Q (degree Q   degree P + 1) has finite number of poles in the complex plane and a > 

0 

Method: i. According to (c) above, write I as: 

I = Re Im ( ) iaxor f x e dx





 
 
 
  

 

ii. Draw a closed path C = CR+[–R,R] 

where CR: ,0iz Re     , with large R to enclose all poles ak ‘s of  f  within C. 

 

                                   x  a3       CR 

                         x  a2    x       x                                         

                                      x  a1     x           x  an 

 

                    – R  0     R                                   

iii.

1

0 as 
2 Res( , ) ( )  as 

( ) ( ) ( )

R

n
iaz iax

k

k

R

iaz iaz iax

C C R

R
i fe a f x e dx R

f z e dz f z e dz f x e dx




 



 
 

 

 

   iv. Answer:  I = Re Im ( ) iaxor f x e dx





 
 
 
  

                     
1

Re Im 2 Res( . , )
n

iaz

k

k

or i f e a


 
  

 
  

Example 3: Evaluate I =
2 2

0

sin

( 1)( 4)

x xdx

x x



   



135 

 

Solution: i. Note the integrand is an even function: Therefore,  I = 
2 2

1 sin

2 ( 1)( 4)

x xdx

x x




  . 

iii. Here , 

I = 
1

Im ( )
2

ixf x e dx





 
 
 
  

where 
2 2

( )
( 1)( 4)

z
f z

z z


 
  

iv. Poles of f in the upper half plane: 

     z = i , z = 2i  (2 Simple Poles) 

iii. Calculate the Residues: 

     

1

2 2

2

2 2

Res( , ) lim( )
( 1)( 4) 6

Res( ,2 ) lim( 2 )
( 1)( 4) 6

iz
iz

z i

iz
iz

z i

ze e
fe i z i

z z

ze e
fe i z i

z z









  
 


  

 

 

 

iv. Note that:  

1) ( ) ( ) ( )

R

R

iz iz ix

C C R

f z e dz f z e dz f x e dx


     … (*) 

2) Apply Cauchy Residue Theorem to the Left side of (*). Take the limit as R  in (*).  Then 

apply Result I to 2
nd

 integral in (*), we get: 

 
1 2

2

( ) 2 Res( , ) Res( ,2 )

2 1
6 6 3

ix iz izf x e dx i fe i fe i

e e i
i e

e










 


    




      
 


 

 

4) (Ans.) 

I =  2 2 2

1
Im 1

2 ( 1)( 4) 6

ixxe dx
e

x x e






 
  

  
  

 

D. Type 4: I = ( )f x dx





   

where f has a simple pole x=c on the real axis and finite number of complex poles : 

 

Method:  

i.  Draw a closed path  

C = CR + [–R, –r] – Cr +[r,R] 

where CR: ,0iz Re     , with large R to enclose within C all poles ak ‘s of  f  . 

ii.  Also, draw another path  

Cr: ,0iz c re      , 

with small r so that not none of the complex poles of  f  is enclosed between Cr and the real axis.  
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                                   CR 

                                          Cr 

                                                    

                                           
                   – R       c– r   c   c+r  R                           

1

0 as 
2 Res( , ) ( )  as 0,

Res( , ) as 0
( )  as 0,

( ) ( ) ( )

( ) ( )

R

cn

k

k

r

c

c r

C C R

R
i f a f x dx r R

R

C c r

i f c r
f x dx r R

f z dz f z dz f x dx

f z dz f x dx





 







 
  

 

  
  

 

 

 



  

 
iii.  (Ans.)  

I = 
1

2 Res( . , ) Res( . , )
n

iaz iaz

k

k

i f e a i f e c 


   

Example 4: Evaluate I =
2( 4)( 16)

dx

x x x




   

Solution: Here,  
2

1
( )

( 4)( 16)
f z

z z z


 
  

i. Poles of f in the upper half plane: 

z = 2i   (1 Simple Pole) 

ii. Poles of f on the Real Axis: 

z = 0, – 4   (2 Simple Poles) 

 

iii. Calculate the Residues:                                                                 

        

              

  

                                                                                              

                                                                        

                                                       

  

       

  


